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Abstract. Verifiably encrypted signatures are used when Alice wants to sign a
message for Bob but does not want Bob to possess her signature on the message
until a later date. Such signatures are used in optimistic contact signing to provide
fair exchange. Partially blind signature schemes are an extension of blind signature
schemes that allows a signer to sign a partially blinded message that include pre-
agreed information such as expiry date or collateral conditions in unblinded form.
These signatures are used in applications such as electronic cash (e-cash) where the
signer requires part of the message to be of certain form. In this paper, we propose a
new verifiably encrypted signature scheme and a partially blind signature scheme,
both based on bilinear pairings. We analyze the security and efficiency of these
schemes and show that they are more efficient than the previous schemes of their
kinds.
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1 Introduction

When Alice wants to sign a message for Bob but does not want Bob to possess her signature
on the message immediately. Alice can achieve this by encrypting her signature using the
public key of a trusted third party (adjudicator), and sending the result to Bob along with
a proof that she has given him a valid encryption of her signature. Bob can verify that
Alice has signed the message but cannot deduce any information about her signature. At
a later stage, Bob can either obtain the signature from Alice or resort to the adjudicator
who can reveal Alice’s signature. There are many applications of such verifiably encrypted
signature scheme, such as online contract signing [3, 4]. Boneh et al. [10] gave a verifiably
encrypted signature scheme as an application of their aggregate signature. Their scheme
is based on a short signature due to Boneh, Lynn, and Shacham (BLS) [11] constructed
from bilinear pairings.

Blind signatures were first introduced by Chaum [13] and play a central role in crypto-
graphic protocols such as e-cash or e-voting that require user anonymity. However, when

? This is the revised version of our INDOCRYPT 2003 paper. The original partially blind signa-
ture scheme in INDOCRYPT 2003 paper does not meet the unlinkability mentioned by Sherman
S.M. Chow et al. After a slight modification, it can meet all the properties of a partially blind
signature.
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we use blind signature to design e-cash schemes, there are two obvious shortcomings: (1)
To prevent a customer from double-spending his e-cash, the bank has to keep a database
which stores all spent e-cash to check whether a specified e-cash has been spent or not
by searching this database. This operation is referred to as the freshness checking (or the
double-spending checking) of e-cash. Certainly, the database kept by the bank may grow
unlimitedly. (2) The bank cannot inscribe the value on the blindly issued e-cash. To be-
lieve the face value of e-cash, there are two conventional solutions: First, the bank uses
different public keys for different coin values. In this case, the shops and customers must
always carry a list of those public keys in their electronic wallet, which is typically a smart
card whose memory is very limited. Second solution, the bank can use the cut-and-choose
algorithm [13] in the withdraw phase. But this is very inefficient.

Partially blind signatures were introduced by Abe and Fujisaki [1] to allow the signer
to explicitly include some agreed information in the blind signature. Using partially blind
signatures in e-cash system, we can prevent the bank’s database from growing unlimitedly.
Because the bank assures that each e-cash issued by it contains the information it desires,
such as the date information. By embedding an expiration date into each e-cash issued
by the bank, all expired e-cash recorded in the bank’s database can be removed. At the
same time, each e-cash can be embedded the face value, the bank can know the value on
the blindly issued e-cash. A number of partially blind signature schemes using different
assumptions have been proposed. Abe and Fujisaki’s scheme is based on RSA [1]. Abe and
Okamoto’s scheme is based on discrete logarithm problem [2] and Fan and Lei’s scheme is
based on quadratic residues problem [14].

In this paper, we propose a new verifiably encrypted signature scheme and a partially
blind signature scheme, both based on bilinear pairings. We analyze security of these
schemes and show that they are more efficient than previous schemes.

The rest of the paper is organized as follows. In the next section we give a brief
introduction to bilinear pairings and describe two signature schemes from bilinear pairings.
Section 3 gives the definition and security properties of verifiably encrypted signature
schemes and partially blind signature schemes. In Section 4 we describe our proposed
verifiably encrypted signature schemes and in Section 5 analye its security. Sections 6
and 7 give our proposed partially blind signature scheme and its analysis, respectively.
Section 8 concludes the paper.

2 Preliminaries

In recent years, bilinear pairings have been used to construct numerous new cryptographic
primitives [9, 11, 12, 16, 17, 19, 21–25]. We recall the basic concept and properties of bilinear
pairings.

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and G2 be
a cyclic multiplicative group with the same order q. Let e : G1 × G1 → G2 be a bilinear
pairing with the following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1, a, b ∈ Zq

2. Non-degeneracy: There exists P,Q ∈ G1 such that e(P,Q) 6= 1, in other words, the
map does not send all pairs in G1 ×G1 to the identity in G2;

3. Computability: There is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.
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Three well-known problems in groups that is commonly used in Cryptography are,
Discrete Logarithm Problem (DLP), Decision Diffie-Hellman Problem (DDHP)and Com-
putational Diffie-Hellman Problem (CDHP). For the sake of brevity we do not state the
problems here and refer the reader to [8, 18]. Two variations of CDHP are:

– Inverse Computational Diffie-Hellman Problem (Inv-CDHP): For a ∈ Z∗

q ,

given P, aP, compute a−1P..
– Square Computational Diffie-Hellman Problem (Squ-CDHP): For a ∈ Z∗

q ,

given P, aP, compute a2P.

Generalizing these two problems, we can obtain the following problems:

Definition 1 (k-wCDHP (k-weak Computational Diffie-Hellman Problem)[19]).
Given k + 1 values < P, yP, y2P, . . . , ykP >, compute 1

y
P .

Definition 2 (k+1 Exponent Problem [26]). Given k + 1 values < P, yP, y2P, . . . ,

ykP >, compute yk+1P .

The following theorem due to [26], gives the relationship between the two problems:

Theorem 1. k-wCDHP and k+1EP are polynomial time equivalent.

Assumptions: We assume that DLP, CDHP, Inv-CDHP, Squ-CDHP and k+1 Exponent
Problem are hard, which mean there are no polynomial time algorithm to solve them with
non-negligible probability.

When the DDHP is easy but the CDHP is hard on the group G, we call G a Gap
Diffie-Hellman (GDH) group. From bilinear pairing, we can obtain the GDH group. Such
groups can be found on supersingular elliptic curves or hyperelliptic curves over finite field,
and the bilinear parings can be derived from the Weil or Tate pairing. More details can
be found in [9, 12, 16].

Schemes in this paper can work on any GDH group. Throughout this paper, we define
the system parameters in all schemes are as follows: Let P be a generator of G1 with order
q, the bilinear pairing is given by e : G1 × G1 → G2. These system parameter can be
obtained using a GDH Parameter Generator IG [9]. Define two cryptographic hash
function H : {0, 1}∗ → {0, 1}λ, in general, |q| ≥ λ ≥ 160, and H0 : {0, 1}∗ → G

∗

1. Denote
params = {G1, G2, e, q, λ, P,H,H0}.

2.1 The Basic Signature Scheme

A signature scheme is described by the following four algorithms : a parameter genera-
tion algorithm Generate, a key generation algorithm KeyGenparam, a signature generation
algorithm Sign and a signature verification algorithm Ver.

We recall a basic signature scheme from bilinear pairings proposed in [26].

1. Generate. Generate the system parameters: params.
2. KeyGenparam. Pick random x ∈R Z∗

q , and compute Ppub = xP . The public key is Ppub.
The secret key is x.

3. Sign. Given a secret key x, and a message m. Compute S = 1
H(m)+x

P .
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4. Ver. Given a public key Ppub, a message m, and a signature S, verify if e(H(m)P +
Ppub, S) = e(P, P ).

This signature scheme was proposed at [26], it can be regarded as being derived from
Sakai-Kasahara’s new ID-based encryption scheme with pairing [22]. In [26], the authors
proved that this signature scheme was secure against existential forgery on adaptive chosen-
message attacks (in the random oracle model) assuming the “k + 1 Exponent Problem” is
hard in G1.

2.2 The Blind GDH Signature

We introduce a blind GDH signature scheme as follows:

– Generate. Generate the system parameters: params.
– KeyGenparam. Pick random x ∈R Z∗

q , and compute Ppub = xP . The public key is Ppub.
The secret key is x.

– Blind signature issuing. The user wants a message m ∈ {0, 1}∗ to be signed.
• (Blinding) The user randomly chooses a number r ∈R Z∗

q , computes M ′ = H0(m)+
rP , and sends M ′ to the signer.

• (Signing) The signer sends back σ′, where σ′ = x ·M ′.
• (Unblinding) The user then computes the signature σ = σ′ − rPpub and outputs

(m,σ).
– Ver. Given a public key Ppub, a message m, and a signature σ, verify if e(Ppub, H0(m)) =

e(P, σ) holds.

This blind signature scheme can be regarded as the blind version of BLS signature
scheme [11], that was firstly mentioned in [24]. In [7], Boldyreva gave a security proof
of this blind signature scheme, they showed that this blind signature scheme was secure
against one-more forgery under the “Chosen-target CDH” [7] assumption.

3 Definitions

In this section, we introduce the definitions and security properties of verifiably encrypted
signature and partially blind signature.

Definition 3 (Verifiably Encrypted Signature [10]). A verifiably encrypted signature
scheme consists of three entities: signer, verifier and adjudicator. There are seven algo-
rithms. Three, KeyGen, Sign, and Verify, are analogous to those in ordinary signature
schemes. The others, AdjKeyGen, VESigCreate, VESigVerify, and Adjudicate,
provide the verifiably encrypted signature capability.

– KeyGen, Sign, Verify: These are key generation, signing and verification of the
signer, they are same as in standard signature schemes.

– AdjKeyGen: This is generating a public-private key pair (APK,ASK) for the adju-
dicator.

– VESigCreate: Given a secret key SK, a message m, and an adjudicator public key
APK, compute a verifiably encrypted signature ν on m.
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– VESigVerify: Given a public key PK, a message m, an adjudicator public key APK,
and a verifiably encrypted signature ν, verify that ν is a valid verifiably encrypted
signature on m under key PK.

– Adjudicate: Given an adjudicator keypair (APK,ASK), a certified public key PK,
and a verifiably encrypted signature σ on some message m, extract and output ν, an
ordinary signature on m under PK.

Besides the ordinary notions of signature security in the signature component, we
require three security properties of verifiably encrypted signatures:

Validity: This requires that VESigVerify(m,VESigCreate(m)) and Verify(m, Ad-
judicate (VESigCreate(m))) hold for all m and for all properly-generated keypairs and
adjudicator keypairs.

Unforgeability: This requires that it be difficult to forge a valid verifiably encrypted
signature.

Opacity: This requires that it be difficult, given a verifiably encrypted signature, to
extract an ordinary signature on the same message.

Partially blind signatures were introduced by Abe and Fujisaki [1]. In [2], Abe and
Okamoto presented a formal definition of partially blind signature schemes. The following
definition is based on Abe-Okamoto’s definition.

Definition 4 (Partially Blind Signature). A Partially blind signature scheme consists
of three participants: signer, user and verifier. There are three algorithms: Key Gener-
ation algorithm, Partially blind signature issuing algorithm and Verification algo-
rithm.

– Key Generation is a probabilistic polynomial-time algorithm that takes security pa-
rameter k and outputs a public and secret key pair (pk, sk).

– Partially blind signature issuing is a interactive protocol between the signer and
the user. The public input of the user contains pk and the public information info.
The public input of the signer contains the public information info. The private input
tape of the the signer contains sk, and that for the user contains message m. When
they stop,the public output of the user contains either completed or not completed, the
private output of the user contains either “fail” or (info,m, σ).

– Verification is a (probabilistic) polynomial-time algorithm that takes (pk, info, m, σ)
and outputs either accept or reject.

Security of a partially blind signature scheme is in terms of three requirements: com-
pleteness, partial blindness and non-forgeability. Partial blindness must satisfy the following
two properties: (1). The signer assures that an issued signature contains the information
that it desires, and none can remove the embedded information from the signature. (2).
For the same embedded information, the signer cannot link a signature to the instance of
the signing protocol that produces the corresponding blind signature. The most powerful
attack on a blind signature is one-more signature forgery introduced by Pointcheval and
Stern in [20]. A partially blind signature scheme is called unforgeable against one-more
forgery under chosen message attack, that means for each info, for some integer l, there is
no probabilistic polynomial-time adversary A that can compute, after l interactions with
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the signer, l + 1 signatures with non-negligible probability. A partially blind signature
scheme is called secure if it satisfies these requirements.

4 A New Verifiably Encrypted Signature Scheme

At Eurocrypt 2003, Boneh, Gentry, Lynn and Shacham [10] proposed a verifiably encrypted
signature scheme as an application of their aggregate signatures. Their scheme is based on
a short signature due to Boneh, Lynn, and Shacham (BLS) [11] constructed from bilinear
pairings. To get the verifiably encrypted signature, they used the ElGamal encryption
algorithm. In this section, we propose a new verifiably encrypted signature scheme from
bilinear pairings. This new scheme does not require the ElGamal encryption.

The new verifiably encrypted signature scheme uses the basic signature scheme in 2.1
and works as follows.

Key Generation. KeyGen and AdjKeyGen are the same as the key generation algo-
rithm in the basic signature scheme, i.e., the system parameters are {G1, G2, e, q, λ, P,H},
the signer and adjudicator have the public-secret key pair (Ppub, x) and (PpubAd, xa), re-
spectively.

Signing, Verification. Sign and V erify are the same as in the basic signature scheme,
i.e., for a message m, the signature is σ = 1

H(m)+x
P , the verification is e(H(m)P +

Ppub, σ) = e(P, P ).

VESig Creation. Given a secret key x ∈ Zp a message m, and an adjudicator’s public
key PpubAd, compute ν = 1

H(m)+x
PpubAd. The verifiably encrypted signature for message

m is ν.

VESig Verification. Given a public key Ppub, a message m, an adjudicator’s public
key PpubAd, and a verifiably encrypted signature ν, accept ν if and only if the following
equation holds:

e(H(m)P + Ppub, ν) = e(P, PpubAd).

Adjudication. Given an adjudicator’s public key PpubAd and corresponding private key
xa ∈ Zq, a certified public key Ppub, and a verifiably encrypted signature ν on some
message m, ensure that the verifiably encrypted signature is valid; then output σ = x−1

a ν.

5 Analysis of the Verifiably Encrypted Signature Scheme

5.1 Security

We show that the proposed signature scheme satisfies properties of a verifiably encrypted
signature scheme.
Validity. ν is the verifiably encrypted signature for message m. Since we have

e(H(m)P + Ppub, ν) = e((H(m) + x)P,
1

H(m) + x
PpubAd) = e(P, PpubAd),



7

this means VESigVerify(m,VESigCreate(m)) holds, and

e(H(m)P + Ppub, x−1
a ν) = e((H(m) + x)P, x−1

a ·
1

H(m) + x
· xaP ) = e(P, P )

this means Verify(m, Adjudicate(VESigCreate(m))), so Validity holds.

Unforgeability: For the unforgeability, we have the following claim:

Claim 1. If the basic signature scheme is secure against existential forgery, then the new
verifiably encrypted signature scheme is secure against existential forgery.

To prove this claim, we show that if the new verifiably encrypted signature scheme
is forgeable against existential forgery, then the basic signature scheme is forgebale too.
That is if there is a probabilistic polynomial time forger algorithm F with a non-negligible
probability ε under an adaptive chosen message attack for the verifiably encrypted signa-
ture scheme, then using F , we can construct a new probabilistic polynomial time forger
algorithm F ′ such that F ′ can forge a signature of the basic signature scheme with non-
negligible probability. Because the basic signature scheme is secure against existential
forgery using adaptive chosen-message attacks (in the random oracle model) and assum-
ing the k + 1 Exponent Problem [26] is hard in G1, then the new verifiably encrypted
signature scheme is unforgeable.

We adopt the security model of Boneh et al. [10]. We assume that the basic signa-
ture scheme is given as in 2.1 : {G1, G2, e, q, λ, P,H}, and the public-secret key pair of the
signer is (Ppub, x). The forger algorithm F ′ sets up a verifiably encrypted signature scheme
V based on the basic signature scheme: F ′ generates a key, (x0, P0) ← KeyGen, which
serves as the adjudicator’s key. Suppose a probabilistic polynomial time forger algorithm
F for the verifiably encrypted signature scheme V is given. Now, F ′ runs F on V and if F
generates a forged verifiably encrypted signature ν ′ for a message m′, then F ′ produces a
forged signature σ′ of the basic signature scheme for this message m′, where σ′ = x−1

0 ν′.

Opacity: For the opacity, we have the following claim:

Claim 2. If the basic signature scheme is secure against existential forgery and the DLP
is hard, then the new verifiably encrypted signature scheme is secure against extraction.

Suppose given a verifiably encrypted signature ν for a message m, an adversaryA wants
to compute the signature σ of the signer on the message m. A either forge a signature
of the signer for message m (under the signer’s public key Ppub), directly, or extract a
signature σ′ from ν, such that e(H(m)P + Ppub, σ

′) = e(P, P ).
Assuming that the basic signature scheme is secure against existential forgery, then it

is impossible to forge a signature of the signer for message m. We show that extracting
a signature σ′ from ν such that e(H(m)P + Ppub, σ

′) = e(P, P ), is equivalent to solving
DLP. Since ν satisfies

e(H(m)P + Ppub, ν) = e(P, PpubAd) = e(P, P )xa ,

and due to the bilinearity property of the pairing, we have

e(H(m)P + Ppub, x−1
a ν) = e(P, P ).
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Due to the non − degeneracy of bilinear pairing, we have σ′ = x−1
a ν. So, to get σ′, the

adversary A should know xa which is the discrete logarithm of PpubAd in base P .

5.2 Efficiency

We compare our verifiably encrypted signature scheme with Boneh et al.’s scheme [10]
from the view point of computation overhead. We denote Pa the pairing operation, Pm
the point scalar multiplication on G1, Ad the point addition on G1, Mu the multiplication
on G2, Inv the inversion in Zq and MTP the MapToPoint hash operation in BLS scheme
[11]. We summarize the result in Table 1(we ignore the general hash operation).

Schemes V ESig Creation V ESig V erification Adjudication

Proposed 1Inv + 1Pm 2(or 1)Pa + 1Pm + 1Ad 1Inv + 1Pm

Boneh et al.′s 1MTP + 3Pm + 1Ad 1MTP + 3Pa + 1Mu 1Pm + 1Ad

Table 1. Comparison of our scheme and the Boneh et al.’s scheme

We note that the computation of the pairing is the most time-consuming. Although
there have been many papers discussing the complexity of pairings and how to speed up the
pairing computation [5, 6, 15], the computation of the pairing still remains time-consuming.
In our scheme, we can precompute e(P, PpubAd) and publish it as part of the adjudicator’s
public keys, therefore, there is only one pairing operation in VESig verification, but there
are three pairing operations in Boneh et al.’s scheme. On the other hand, our scheme does
not require special hash functions but a general cryptographic hash functions such as SHA-
1 or MD5. In Boneh et al.’s scheme, there is a special hash operation: MapToPoint, there
is at least one quadratic or cubic equation over finite field need to be solved. Hence, our
verifiably encrypted signature scheme is much more efficient than Boneh et al.’s scheme.
Finally, our signature is shorter than Boneh et al.’s signature and consists of one element
of G1 in our scheme, but two elements in Boneh et al.’s scheme.

6 A New Partially Blind Signature Scheme

We propose a new partially blind signature scheme from bilinear pairings. The proposed
scheme can be regarded as the combination of the basic signature scheme in 2.1 and the
blind GDH signature in 2.2.

The system parameters are: params = {G1, G2, e, q, λ, P,H,H0}.
[Key generation:]

The signer picks random x ∈R Z∗

q , and computes Ppub = xP . The public key is Ppub. The
secret key is x.

[Partially blind signature issuing protocol:]
Suppose that m be the message to be signed and c be the public information. The protocol
is shown in Fig. 1.

– (Generation of the public information) The user and signer generate the public infor-
mation c together.
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User Signer

c
-�

r ∈R Z∗

q

U = H0(m||c) + r · (H(c)P + Ppub)

-
U

V
�

V = 1
H(c)+x

U

S = V − rP

Fig. 1. The partially blind signature issuing protocol

– (Blinding) The user randomly chooses a number r ∈R Z∗

q , computes U = H0(m||c) +
r · (H(c)P + Ppub), and sends U to the signer.

– (Signing) The signer sends back V, where V = (H(c) + x)−1U .
– (Unblinding) The user computes S = V − rP .

Then (S,m, c) is the partially blind signature of the message m and public information c.
[Verification:]

A verifier can accept this partially blind signature if and only if

e(H(c)P + Ppub, S) = e(P, H0(m||c)).

7 Analysis of the New Partially Blind Signature Scheme

7.1 Completeness

The completeness can be justified by the following equations:

e(H(c)P + Ppub, S)

= e((H(c) + x)P, V − rP )

= e((H(c) + x)P, (H(c) + x)−1U − rP )

= e((H(c) + x)P, (H(c) + x)−1U)e((H(c) + x)P, −rP )

= e(P, H0(m||c) + r · (H(c)P + Ppub)e(H(c)P + Ppub, −rP )

= e(P, H0(m||c))e(P, r · (H(c)P + Ppub)e(H(c)P + Ppub, −rP )

= e(P, H0(m||c))

7.2 Partial Blindness

In the Blinding phase, r is chosen randomly from Z
∗

q and so H0(m||c)+ r · (H(c)P +Ppub)
is a random element of the group G1. The signer receives this random information and the
public information which he already knows and so no information about the message will
be leaked.

The signer is assured that a signature issued by him contains the public information
that he has agreed on and this information cannot be removed from the signature. This is
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true because if a malicious user could generate c′ and replace c from the signer’s signature
(S,m, c) to obtain a signature with c′. Then we have

e(H(c′)P + Ppub, S) = e(P, H0(m||c
′)),

that means
e((H(c′)−H(c))P, S) = e(P, H0(m||c

′)−H0(m||c)),

so, c and c′ should satisfy (H(c′)−H(c))S = H0(m||c
′)−H0(m||c). This is unlikely, because

H,H0 are cryptographic hash functions.
Given a valid signature (S,m, c) and any view (U, V ), there always exists a unique

blinding factor r such that V − S = rP . So, due to the randomness of blinding factor
chosen during the Blinding phase and the fact that the public information is independent
of the message, even if the same embedded information be used for two messages, the
signer cannot link a signature to the corresponding instance of signature issuing protocol.

Hence the partially blind signature scheme satisfies the partial blindness property.

7.3 Unforgeability

To show that the proposed partially blind signature scheme is unforgeable, we first trans-
form it to a fully blind signature scheme and then prove that the fully blind signature
scheme is unforgeable.

For any public information c, the signer sets up the system parameters and public key
as: params = {G1, G2, e, q, λ, P,H,H0} and Q. Here Q = H(c)P + xP = sP , x ∈R Z∗

q .
The secret key is s−1 = (H(c) + x)−1. Let m be the message to be signed. The blind
signature issuing protocol of this fully blind signature scheme is shown as follows:

– (Blinding) The user randomly chooses a number r ∈R Z∗

q , computes U = H0(m)+rQ,
and sends U to the signer.

– (Signing) The signer sends back V, where V = s−1U = (H(c) + x)−1U .
– (Unblinding) The user computes S = V − rP .

The verification this blind signature is

e(Q, S) = e(P, H0(m)).

We call above fully blind signature scheme FuBS. FuBS is derived from the proposed
partially blind signature scheme. It is easy to see that if a massage-signature pair (m, c, S)
can be forged for the proposed partially blind signature scheme, then a blind signature
on the message m′ = m||c for the corresponding FuBS can be forged. So, we have the
following lemma.

Lemma 1. If FuBS is secure against one-more forgery under chosen message attack. Then
the proposed partially blind signature scheme is secure against one-more forgery under
chosen message attack.

Next, we show that FuBS is secure against one-more forgery under chosen message attack.
It is easy to see that FuBS is very similar to the blind GDH signature in section 2.2. We will
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use similar technique in [7], where the author defined “Chosen target CDH” assumption
and proved that their blind signature scheme is secure assuming the hardness of the chosen-
target CDH problem. First, we give a variations of chosen-target CDH problem, named
“Chosen target Inverse CDH” problem. We propose the problem and assumption as follows:

Definition 5. Let G1 be GDH group of prime order q and P is a generator of G1. Let s

be a random element of Z
∗

q and Q = sP . Let H0 : {0, 1}∗ → G1 be a cryptographic hash
function. The adversary A is given input (q, P,Q,H0) and has access to the target oracle
TG1

that returns a random point Ui in G1 and the helper oracle Inv-cdh-s(·) (compute
s−1 · (·) ). Let qT and qH be the number of queries A made to the target oracle and the
helper oracle respectively. The advantage of the adversary attacking the chosen-target in-
verse CDH problem Advct−icdh

G1
(A) is defined as the probability of A to output a set of

l pairs ((V1, j1), (V2, j2), . . . , (Vl, jl)), for all i = 1, 2, . . . , l ∃ ji = 1, 2, . . . , qT such that
Vi = s−1Uji

where all Vi are distinct and qH < qT .
The chosen-target inverse CDH assumption states that there is no polynomial-time adver-
sary A with non-negligible Advct−icdh

G1
(A).

The following theorem shows that FuBS is secure assuming the chosen-target inverse
CDH problem is hard.

Theorem 2. If the chosen-target inverse CDH assumption is true in the group G1 then
FuBS is secure against one-more forgery under chosen message attack.

Proof. (sketch). If there is a probabilistic polynomial time one-more forger algorithm F
with a non-negligible probability ε for FuBS under an chosen message attack, then using
F , we can construct an algorithm A such that A can solve the chosen-target inverse CDH
problem with a non-negligible probability.

Suppose that a probabilistic polynomial time forger algorithm F is given. Suppose that
A is given a challenge as in Definition 5. Now F has access to a blind signing oracle s(·)
and the random hash oracle H0(·). First, A provides (G1, G2, e, q, P,H0, Q) to F and A
has to simulate the random hash oracle and the blind signing oracle for F .

Each time F makes a new hash oracle query which differs from previous one, A will
forward to its target oracle and returns the reply to F . A stores the pair query-reply in
the list of those pairs. If F makes a query to blind signing oracle, A will forward to its
helper oracle Inv-cdh-s(·) and returns the answer to F .

Eventually F halts and outputs a list of message-signature pairs ((m1, S1), (m2, S2),
. . . , (ml, Sl)). A can find mi in the list stored hash oracle query-reply for i = 1, 2, . . . , l.
Let ji be the index of the found pair, then A can output its list as ((S1, j1), (S2, j2), . . . ,

(Sl, jl)). Then this list is a solution to the problem in Definition 5. �

From Lemma 1 and Theorem 2, we have the following theorem.

Theorem 3. The proposed partially blind signature scheme is unforgeable under the chosen-
target inverse CDH assumption in the group G1.
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7.4 Advantages

Comparing with previous partially blind signature schemes, such as [1], [2], [14], etc, the
new partially blind signature scheme has a number of advantages:

A1. Short signature. In the proposed partially blind signature scheme, the signature only
consists of an element in G1. In practice, the size of the element in G1 (elliptic curve
group or hyperelliptic curve Jacobians) can be reduced by a factor of 2 with compres-
sion techniques. So, like BLS short signature scheme [11], our signature scheme can
provide the short signature, the signature length is half the size of a DSA signature for
a similar level of security. Short signatures are needed in low-bandwidth communica-
tion environments. An important application of partially blind signature is in e-cash
system. E-coins are stored in users’ electronic wallets which are typically implemented
in smart cards with limited memory. The short length of the proposed signature makes
the system much more practical.

A2. Efficient. The scheme can be implemented using elliptic curve cryptosystem, and is
very efficient from the view point of the user and the bank. In the partially blind
signature issuing protocol, the user only needs to perform 1MTP, 3Pm and 2Ad, the
bank only needs to perform 1Inv and 1Pm. In the verification, two pairing operations
are needed (As we noted in 5.2, the computation of the pairing is the most time-
consuming). In e-cash systems the verification will be done by the shop that can be
assumed to have more computation power.

A3. Batch verify (For the same public information c). The efficiency of the system is of
paramount importance when the number of verifications is considerably large (e.g.,
when a bank issues a large number of electronic coins and the customer wishes to ver-
ify the correctness of the coins). The proposed partially blind signature scheme is very
efficient when we consider the batch verification for the same public information c. As-
suming that S1, S2, · · · , Sn are partially blind signatures on messages m1,m2, · · · ,mn

with the same public information c. The batch verification is then to test if the fol-
lowing equation holds:

e(H(c)P + Ppub,
∑

Si) = e(P,
∑

H0(mi||c)).

8 Conclusion

Verifiably encrypted signature and partially blind signature are very important and useful
cryptographic primitives. We proposed a new verifiably encrypted signature scheme and a
partially blind signature scheme, both based on bilinear pairings. We analyzed the security
and efficiency of them and showed that they are efficient than the previous schemes.
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