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The security of ordinary digital signature schemes relies on a computational as-
sumption. Fail-stop signature (FSS) schemes provide security for a signer against a
forger with unlimited computational power by enabling the signer to provide a proof of
forgery, if it occurs. Signing long messages using FSS requires a hash function with
provable security which results in slow signature generation. In this paper we propose
a new construction for FSS schemes based on linear authentication codes which does not
require a hash function, and results in a much faster signature generation at the cost of
slower verification, and a longer secret key and signature. An important advantage of
the scheme is that the proof of forgery is the same as a traditional FSS and does not rely
on the properties of the hash function. The scheme can be used in a distributed setting
where signature generation requires collaboration of k signers. The paper concludes
with some open problems.

Keywords: fail-stop signature schemes, authentication codes, linearised polynomials,
one-time signature, threshold signature

1. INTRODUCTION

Security of an ordinary digital signature relies on a computational assumption, that
is that there is no efficient algorithm to solve a particular problem. This means that if
an enemy can solve the underlying hard problem, he can successfully forge a signature,
and there is no way for the signer to prove that a forgery has occurred. To provide pro-
tection against an enemy with unlimited computational power who can always solve the
underlying hard problem, fail-stop signature (FSS) schemes have been proposed [16, 27].
Loosely speaking, an FSS is a signature scheme augmented by a proof system which
allows the signer to prove that a forged signature was not generated by him/her. To
achieve this property, the signature scheme has many secret keys that correspond to the
same public key and the sender uses a specific one of them. An unbounded enemy who
has solved the underlying hard problem and knows the set of all secret keys cannot de-
termine which secret key is actually used by the sender. In the case of a forgery, that is
signing a message with a randomly chosen secret key, the sender can use his secret key

Received January 30, 2001; accepted July 10, 2001.
Communicated by Chi Sung Laih.
* The preliminary version of this paper has appeared in Indocrypt 2000.
* This work is in part supported by Australian Research Council Grant Number A49703076.



REI SAFAVI-NAINI, WILLY SUSILO AND HUAXIONG WANG880

to generate a second signature for the same message which will be different with over-
whelming probability from the forged one. The two signatures on the same message
can be used as a proof that the underlying computational assumption is broken and the
system must be stopped - hence the name fail-stop, and thus, FSS schemes’ provide un-
conditional security for the signer. However security for the receiver is computational
and relies on the difficulty of the underlying hard problem. FSS schemes in their basic
form are one time primitives, and so the key can be used for signing a single message.

FSS schemes and their variants have been studied by numerous authors (see, for
example, [20, 21, 23-25]).

Signing long messages A commonly used method for signing an arbitrarily long mes-
sage using a traditional signature scheme is by the hash-then-sign method. Using this
method, the message is first hashed and then the signature scheme is applied to the hash
value. In FSS a similar method can be used. However, as noted in [16], the proof of
forgery will no longer be based on showing that the underlying assumption of the signa-
ture scheme is broken; rather, it will be by showing that a collision for the colli-
sion-resistant hash function used for hashing is found. This implies that to have an ac-
ceptable proof of forgery, a hash function which is based on a computational assumption
must be used. In [3, 5] hash functions based on the discrete logarithm and factorization
assumption are constructed, and it is shown that they require on average one multiplica-
tion for each bit of the message, and the size of the hash value is equal to the size of the
modulus. The results is that for long messages FSS schemes have a slow signature
generation process (for example one million multiplications for a one megabyte file).

An alternative approach is to have an FSS scheme that can be directly used for arbi-
trarily long messages. An efficiency measure [24] for FSS is information rate, ρ, which
is the ratio of the message length to the signature length. Using FSS for arbitrarily long
messages and without using hash functions means that FSS with high value of ρ must be
designed. The highest value of ρ for the known schemes is 1 and is achieved by a
scheme proposed in [24]. For other schemes, ρ ≤ and so none of the known schemes
can be efficiently used for direct signing of long messages.

Other efficiency measures of FSS schemes are the lengths of the secret key, public
key and the signature [16]. The most efficient FSS with respect to the first three pa-
rameters is a discrete logarithm-based system due to van Heijst and Pedersen [25] (or
vHP scheme). The scheme in [21] has the same efficiency as vHP.

In this paper we propose a new FSS scheme for which ρ can be chosen arbitrarily low
and so can be used for direct signing of long messages. This means that no hash func-
tion is required, and so security of the resulting FSS is the same as a traditional FSS con-
struction (based on the difficulty of DL in this case). The proposed scheme requires
much less computation for signing a long message compared to the hash-then-sign
method and using provably secure hash functions [3, 5]. More specifically, the signing
process in our scheme is around K/2 times faster than the vHP scheme (using a known
provable secure hash functions), where K is the length of the message in the vHP scheme
(at least 151 bits [15]). The drawback of the scheme compared to the vHP is that the
signature verification process is slower. It also requires larger sizes for the secret key,
the public key and the signature. Table 3 compares various parameters of the two
schemes. Faster signing process makes the scheme attractive in environments where
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the client, such as a smart card or mobile phone has limited computational power but the
host is a powerful computer. The construction follows a general approach for con-
structing FSS scheme from unconditionally secure authentication code (A-code) pro-
posed in [20] and uses a special class of A-codes, called linear A-codes, in which the set
of encoding rules written as vectors over Fq form a vector space. These A-code are of
independent interest because of their linearity. We give the construction of a linear
A-codes using linearised polynomials over finite fields that can be used to sign arbitrary
length messages.

An attractive feature of using linear A-codes to construct FSS schemes is their
flexibility. That is, because of the algebraic properties of the underlying A-codes such
FSS schemes can be easily extended into a distributed setting. We show how to extend
our construction to the threshold FSS.

Previous Works The first construction of fail-stop signature [27] is a one-time signa-
ture scheme (similar to [14]), and results in bit by bit signing of a message, which is very
impractical. In [17] an efficient single-recipient FSS to protect clients in an on-line
payment system, is proposed. The main disadvantage of this system is that signature
generation is a 3-round protocol between the signer and the recipient and so it has high
communicational cost. The size of the signature is twice the length of the message. In
[25], an efficient FSS that uses the difficulty of the discrete logarithm problem as the
underlying assumption is presented. This is the most efficient scheme with respect to
the first three parameters and results in a signature which is twice the size of the message.
For the rest of this paper, we refer to this scheme as vHP scheme. In [24], another
scheme which is nearly as efficient as the vHP scheme is proposed.

In [16, 18], a formal definition of FSS schemes is given and a general construction
using bundling homomorphism is proposed. The construction has provable security,
and all existing FSS with provable security are instances of this construction. It can be
proved that for a system with security level δ for the signer, the signature length and the
length of secret key required for signing a single message are at least 2δ − 1 and 2(δ − 1),
respectively.

In [23], an RSA-based FSS scheme is proposed. The construction follows the vHP
scheme but is less efficient and produces signatures that are four times the length of the
original message.

In [20], a general construction of FSS schemes from authentication codes is pro-
posed. It is shown that a scheme that fits into the general construction of [16] can also
be obtained by using this construction. However, it is not known if the two general
constructions are equivalent.

The paper is organised as follows. In section 2, we briefly review the basic defini-
tions and properties of FSS schemes, A-codes and the paradigm of general construction
of FSS from A-codes. In section 3, we introduce the notion of linear A-codes and pre-
sent a construction method of FSS from linear A-codes. In section 4 we give an effi-
cient construction of linear A-code from linearised polynomials over finite fields. We
provide some efficiency analysis of our new construction by comparing with the previ-
ously existing FSS and show that the new schemes are particularly efficient for signing
long messages in section 6. We then generalise our basic FSS to (k, k) threshold FSS
and discuss its extension to (k, n) threshold FSS in section 6. We conclude the paper in
section 7.
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2. PRELIMINARIES

2.1 Fail-Stop Signature Schemes

Similar to an ordinary digital signature scheme, an FSS scheme consists of three
phases:

1. Key generation: The signer and the centre through a two-party protocol generate a pair
of secret key, sk, and public key, pk, and make pk public. This is different from ordi-
nary signature schemes where key generation can be performed by the signer individu-
ally, without the involvement of other parties.

2. Sign: For a message m, the signer uses the signature algorithm sign to generate the
signature y = sign(sk, m), and sends the pair (m, y) to the receiver(s).

3. Test: For a message-signature pair, the receiver(s) uses the public key pk and a test
algorithm test the acceptability of the signature.

It also includes two more polynomial time algorithms:

4. Proof: An algorithm for proving a forgery.
5. Proof-test: An algorithm for verifying that the proof of forgery is valid.

A secure FSS scheme must satisfy the following additional properties [16, 18, 26].

1. If the signer signs a message, the recipient must be able to verify the signature
(correctness).

2. A polynomially bounded forger cannot create forged signatures that successfully pass
the verification test (recipient’s security).

3. When a forger with unlimited computational power succeeds in forging a signature
that passes the verification test, the presumed signer can construct a proof of forgery
and convinces a third party that a forgery has occurred (signer’s security).

4. A polynomially bounded signer cannot create a signature that he can later prove to be
a forgery (non-repudiability).

To achieve the above properties, for each public key there exists many matching se-
cret keys such that different secret keys create different signatures on the same message.
The real signer knows only one of the secret keys, and can construct one of the many
possible signatures. An enemy with unlimited computing power, although he can gen-
erate all the signatures, he does not know which one will be generated by the true signer.
Thus, it will be possible for the signer to provide a proof of forgery by generating a sec-
ond signature on the message with a forged signature, and use the two signatures to show
the underlying computational assumption of the system is broken, hence proving the for-
gery.

An FSS in its basic form is a one-time signature scheme that can only be used for
signing a single message. However, it is possible to extend an FSS scheme to be used
for signing multiple messages [1, 3, 25].
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Security of an FSS is broken if 1) a signer can construct a signature and later pro-
vide a proof that is forged; or 2) an unbounded forger succeeds in constructing a signa-
ture that the signer cannot prove that it is forged. These two types of forgeries are in-
dependent and so two different security parameters, l and δ, are used to show the level
of security against the two types of attacks. More specifically, l is the security level of
the recipient against forgery of the signer, and δ is that of the signer against the un-
bounded forger. It is proved [16] that a secure FSS is secure against adaptive chosen
plain-text attack, and for all c > 0 and large enough ,l probability of success of a
polynomially bounded forger is bounded by c−

l . For an FSS with security level δ for
the signer, the probability of success of an unbounded forger is limited by 2-δ. In this
case we simply call the scheme ,(l δ)-secure.

2.2 Authentication Codes

In the conventional model of unconditionally secure authentication systems, there
are three participants: a transmitter, a receiver and an opponent. The transmitter wants
to send a message to the receiver using a public channel which is subject to active attack.
The opponent can impersonate the sender by inserting a message into the channel, or
substitute a transmitted message with another message. To protect against these attacks,
transmitter and receiver use an authentication code (A-code).

A systematic A-code (or A-code without secrecy) is an A-code where the codeword
(message) generated for a source state (information to be authenticated) is obtained by
concatenating an authenticator (or a tag) to the source state. The code can be specified
by a triple (S, τ, ε) of finite sets together with a (authentication) mapping f: S × ε → τ.
Here S is the set of source states, ε is the set of keys and τ is the set of authenticators.
To send a source state s ∈ S to the receiver, the transmitter uses his secret key e ∈ ε that
is shared by the receiver to construct a message m = (s, t) where t = f(s, e) ∈ τ. When
the receiver receives the message m = (s, t), she uses her secret key to check the authen-
ticity by verifying if t =

? f(s, e). If equality holds, the message m is valid.
An opponent may insert a message m' = (s', t') into the channel without observing

any previous communication, or substitute a message m = (s, t) sent over the channel
with another message m' = (s', t'). The two attacks are called impersonation and substi-
tution, respectively. A message (s, t) is valid if there exists a key e such that t = f(s, e).
We assume that there is a probability distribution on the source states which is known to
all the participants. Given this distribution, the receiver and the transmitter will choose
a probability distribution for ε. We will denote the probability of success of the oppo-
nent in impersonation and substitution by PI and PS, respectively. Let P(⋅) and P(⋅|⋅)
denote the probability distribution of the message space S × τ. Then we have

PI = t,s
max P((s, t) valid) and

PS = t,s
max

't,'ss≠
max P((s', t') valid | (s, t) observed).

If we further assume that the keys and the source states are uniformly distributed, then
the deception probabilities can be expressed as
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Since the opponent can choose between the two attacks, the overall deception probability
of an A-code is defined as PD = max{PI, PS}. An A-code is ε-secure if PD ≤ ε. One
of the fundamental results in the theory of A-codes is the square root bound [9], which
states that PD ≥ ||/1 � , and the equality holds only if |S| ≤ ||� +1. The square root
bound gives a direct relation between the key size and the protection that we can expect
to obtain.

2.3 A General Construction of FSS From A-codes

A general construction of FSS from A-codes is given in [20]. The construction is
for a single-message and uses two families of A-codes, � = {(SK, τ'K,, εK) :K∈N} and � '
= {(SK, τ'K, ε'K) :K∈N}, a family of polynomial time collision intractable bundling hash
functions H = {hK :K∈N} where hK :EK a E'K, and a family of polynomial time collision
intractable hash functions H' = {h'K:K∈N}, where h'K :TK a T'K and the property that for
any choice of key K, and for an arbitrary e ∈ EK the following is satisfied for all s ∈ SK:

If e(s) = t, and hK(e) = e', then e'(s) = t' and h'K(t) = t'

Fig. 1. General construction of FSS from A-code.

That is, we have the communicative diagram as shown in Fig. 1 and satisfying

h'K(f(sK, eK)) = f'K(sK, hk(eK)), ∀sK ∈SK, eK∈ εK

W can construct an FSS as follows:
Index K is the pre-key and is determined by a pre-key generation algorithm gen(k, k',

τ) which takes the following parameters as input: (i) τ, the bundling degree of the hash
function, (ii) k, the difficulty of finding collision for h, and (iii) k' which is the difficulty
of finding collision for h'. Once K is determined, (SK, τK, εK), (SK, τ'K, ε'K), hK and h'K
are fixed, and the following stages are defined:

• Main key generation: The signer chooses eK ∈ εK as his secret key (encoding func-
tion) and constructs e'K = hK(eK) as his public key (verification function).

,
||

|)},(:{|
max

, �

esfte
ts

=∈�
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• Signing: The signature for the message s ∈ SK is given by t = eK(s).
• Testing of the signature: A signature t on a message s is verified if h'K (t) = e'K (s).
• Proof of forgery: Given an acceptable signature t1 on s where t1 ≠ eK(s), the signer

produces t = eK(s) as the proof of forgery.

It is proven in [20] that the above construction results in the following theorems:

Theorem 2.1 The above construction has the following properties:

1. Correct signatures pass the test.
2. A polynomially bounded signer cannot construct a signature and a valid proof of

forgery.
3. If t' is an acceptable signature on s' and t' ≠ eK(s'), the signer obtains a valid proof

of forgery.

Theorem 2.2 Let l and δ denote security parameters of the scheme described above.
Then for all pairs of secret and public keys, e, e', and given a message and signature pair
(s, t) where t = e(s), the probability of a signature t' on a message s' that satisfies e'(s') = t'
also satisfies e(s) = t for an enemy with unlimited power, is at most |V| / |W|, where

V = 't,'s
max {e: e∈E(e', (s, t)), e'(s') = h'(t'), e(s') = t'}

and W = E(e', (s, t)) = { e': e'(s) = t }

3. CONSTRUCTION OF FSS FROM LINEAR A-CODES

In this section, we introduce a new class of A-codes, called linear A-codes, and pre-
sent a construction of FSS schemes by combining linear A-codes and a one-way function
fp,g based on the discrete logarithm.

In the rest of the paper, p is a prime and Fp is the finite field of order p (we may re-
gard Fp as Zp). We also use V(n, q) to denote an n-dimensional vector space over a fi-
nite field with order q.

Let (S, τ, ε) be an authentication code with the authentication mapping f: S × ε → τ.
To each source state s ∈ S, we associate a mapping fs from E to τ defined by fs(e) = f(s,
e), ∀e ∈ ε. Then the family {fs | s ∈ S} completely specifies the underlying A-code (S,
τ, ε). For our purpose, we shall require that the functions fs have some additional
properties, defined as follows:

Definition 3.1 An A-code (S, τ, ε) with the authentication mapping f: S × ε → τ is
called linear (over Fp) if

1. Both ε and τ are linear spaces over Fp;
2. For each s ∈ S, fs is Fp-linear from ε to τ.

In the sequel, we assume that (S, τ, ε) with authentication mapping f is a linear
A-code with ε = V(u, p), τ = V(v, p), where p is a prime. Note that for fixed basis of ε
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and τ each linear mapping from ε to τ can be identified as a u × v matrix over Fp. Thus
we will assume that S is a subset of u by v matrices over Fp, and fs can be defined as fs(e)
= es = t, where e ∈ V(u, p), t ∈ V(v, p).

To construct our FSS scheme we use a linear A-code and a one-way function based
on the discrete logarithm problem, given by,

fp,g : x → gx mod q

where p, q are prime and p |q−1. The construction works as follows.

• Prekey Generation: The centre selects primes q and p such that p |q−1 and a cyclic
subgroup, Hp, of F*

q with order p such that the discrete logarithm over Hp is hard.
He also chooses two elements g, h ∈ Hp, and publishes (p, q, g, h).

• Key Generation: The signer chooses a secret key sk which consists of two authen-
tication keys of a linear A-code (S, τ, ε) over Fp.
That is, sk = (e, e'), e, e' ∈ ε, where e = [e1, …, eu], e' = [e'1, …, e'u], ∀ei, e'j ∈ Fp.
The corresponding public key pk is ge

�he', is defined as

ge
�he' = [

'
uu

' eeee hg...,,hg 11 ] (mod q)

= [pk1, …, pku].

• Sign: To sign a message s ∈ S, the signer applies the authentication code (S, τ, ε)
to generate two authentication tags t and t' corresponding to the key e and e'.
That is, the signature for a message s is

(s, f(s, e), f(s, e')) = (s, es, e's) (mod p)
= (s, t, t')
= (s, [t1, …, tv], [t'1, …, t'v])

• Test: For a message

s = ,

(s, t, t') is a valid signed message iff for all 1 ≤ i ≤ v,

( ) ( ) ( ) i,ui,i,
'
ii s

u
sstt pkpkpkhg K

21
21= (mod q).

• Proof of Forgery: If there is a forged signature ( 't~t~, ) on a message s, then the
presumed signer can produce his own signature on the same message, namely (t,
t'), and show that these two signatures collide.

Theorem 3.1 Let l be the security parameter of the underlying discrete logarithm prob-
lem. If the linear A-code (S, τ, ε) is ∈-secure, then the above construction results in a

,(l δ)-secure FSS scheme, where δ = log(1/∈).








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
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Proof: Clearly, if both the signer and the recipient follow the protocol, then every signa-
ture generated by the signer will pass the test by the recipient. We are left to show that
the scheme is ,(l δ)-secure. First, assume that an unbounded forger tries to generate a
signature that passes the test with respect to the public key such that the signer cannot
provide a proof of forgery. We may further assume that the forger can solve the underly-
ing discrete logarithm. It follows that the forger can calculate a = logg h ∈ Fp and e +
ae' = [e1+ae'1, …, eu +ae'u] . Since the forger does not know the authentication keys e
and e', the success probability of such a forgery is

I

ttSs
forgery

P
e

tese
aaeeεee

tsetesee
P

=
∈

=∈=

+∈
==∈=

∈∈

|}{|

|}|{|
|}and'give|)',{(|

|}'',|)',{(|
maxmax

2

',

�

�

�

�

≤ ε

In fact, we have calculated the value of |V| and |W| as in the general construction of [20].
Next, we show that knowing two different signatures on a message that pass the test,

anyone can solve the underlying logarithm problem, i.e., find a = logg h or a-1 = logh g.
Let (t, t') = ([t1, …, tv], [t'1, …, t'v]) and ( 't~t~, ) = ([ 1t

~ , …, vt
~ ], [ 1't~ , …, v't~ ]) be two

valid signatures (w.r.t the public key) for a message s. Since (t, t') ≠ ( 't~t~, ), we may
assume that there exists i such that t'i ≠ i't~ (or alternatively, we may assume that there is j
such that tj ≠ jt~ ), so t'i − i't~ ≠ 0 mod p. On the other hand, since (t, t') and ( 't~t~, ) pass
the verification test with respect to the common public key [pk1, …, pku], we have

( ) ( ) ppkpkhgh i,ui,ii
'
ii s

u
s't~t~ttg mod1

1 K== .

It follows that ( ) ( )iiii tt~'t~'t gh −− = mod q, and so )()(
iiiig tt~'t~'thlog

gg −− = mod p. There-
fore a = logg h = (t'i − i't~ )( it

~ − ti)
-1 mod p. From this, we conclude that (1) the scheme

is secure against the polynomially bounded signer, that is, a signer cannot construct a
signature and later provide a proof of forgery, and (2) if there is a forged signature ( 't~t~, )
on a message s, then the presumed signer can produce his own signature on the same
message, namely (t, t'), and show that these two signatures collide, and/or reveal the value
logg h. �

Example 3.1 Let S = τ = Fp and ε = Fp × Fp.
We define a function f : S × ε → τ, by f(s, (e1, e2)) = e1 + se2. Then it is easy to verify
that (S, τ, ε) is a linear A-code over Fp. In terms of matrix representation, we can write
a source state s as a 2 × 1 matrix over Fp

S = {s = 








w

1
| w ∈ Fp},

and the authentication mapping f as f(s, (e1, e2)) = (e1, e2) 








w

1
= e1 + we2. The FSS based

on this linear A-code is the same as the vHP scheme.
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4. CONSTRUCTION OF LINEAR A-CODES

Although the linear A-code in example 3.1 is nearly optimal (i.e., nearly meets the
square root bound [9]), it requires that the size of the key be double the size of the source,
i.e., log |ε| = 2log |S|, and so the size of the key grows linearly with the size of the source.
In the following, we construct non-optimal linear A-codes in which the size of the source
space is much larger than the size of the key space.

A polynomial of the form

∑
=

=
n

i

p
i

i

xaxL
0

)(

with coefficients in an extension field mP
F of Fp is called a p-polynomial over mP

F . If
the value of p is fixed once, or is clear from the context, it is also called a linearised
polynomial. It is well-known that if F is an arbitrary extension field of mP

F and L(x) is a
linearised polynomial over mP

F , then

L(β + γ) = L(β) + L(γ) for all β, γ ∈ F,
L(cβ) = cL(β) for all c ∈ Fp and all β ∈ F.

Thus, if F is considered a vector space over Fp, then the linearised polynomial L(x) in-
duces a linear operator on F.

Next we construct a linear A-code from linearised polynomials. We note that lin-
earised polynomials have also been used to construct authentication codes for
non-trusting parties [12, 13] and message authentication codes for multiple authentica-
tion [19]. Let p be a prime and assume

• }|)({
1-

0
r

i

Pi

k

i

p
is FaxaxLS ∈== ∑ =

that is, we let each source state s ∈ S correspond
to a linearised polynomial over ,rp

F denoted by Ls(x). We use the linearised
polynomials up to degree pk-1, resulting in (pr)k different polynomials, and so |S| =
prk.

• ε = {(e1, e2) | e1, e2 ∈ },rp
F and so |ε | = p2r.

• T = rp
F .

• The authentication mapping f: S×ε→τ is defined by f(Ls(x), (e1, e2)) = e1 + Ls(e2).

Theorem 4.1 The above construction results in a linear A-code (S, ε, τ) over Fp with the
following parameters

|S| = prk, |ε| = p2r, |τ| = pr

and

PI = p-r, PS = p-(r - k + 1 ).

Proof: The parameter values for |S|, |ε| and |τ| are obvious. We are left to show that the
constructed A-code is linear and PI = p-r, PS = p-(r-k+1). Consider rp

F as a vector space
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over Fp, then ε and τ are 2r-dimensional and r-dimensional vector spaces over Fp, re-
spectively. For each lineralized polynomial L(x) ∈ S considered as a source state, we
show that fL(x) is a Fp-linear mapping from ε to τ. Note that the finite field rp

F has
prime characteristic p, and we know

iii ppp baba +=+ )(

for a, b ∈ rp
F and any integer i. It is then straightforward to verify that fL(x) is indeed

linear.
For the probability of success of impersonation attack PI, we have

(since fL(x) is linear)

(since fL(x) is subjective)

For the probability of success of substitution attack PS, we have
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Since L(x) and L'(x) are polynomials of degree at most pk - 1 , so is L(x) − L'(x), it follows
that L(x) − L'(x) has at most pk - 1 roots and so |{e2∈ rP

F | L(e2) − L'(e2) = t − t'}| ≤ pk - 1 .
Hence

.)1(
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== kr
r

k

S p
p

p
P

So far, we complete the proof of the desired result. �

Combining Theorem 3.1 and 4.1, we obtain the following corollary.

Corollary 4.1 Let p and q be primes such that l is the required security parameter so that
a polynomially bounded forger cannot break the underlying discrete logarithm problem.
Then the above linear A-code results in a ,(l δ)-secure FSS scheme such that δ = (r − k +
1) log |p|.
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5. EFFICIENCY MEASURES OF FSS SCHEMES

In this section we compare the efficiency of our proposed scheme with the most
efficient FSS scheme, namely vHP. We first fix the level of security provided by the
two schemes, and then find the sizes of the secret key, the public key and the signature.
Table 1 gives the results of the comparison of FSS schemes when security levels of the
receiver and the sender are given by l and δ, respectively. In this comparison, the first
two schemes [25, 26] (first and second column of the table) are chosen because they have
provable security. The first scheme (referred as vHP scheme in this paper) is the most
efficient provably secure scheme, based on the discrete logarithm problems. The third
column is an FSS scheme based on RSA [23]. The fourth column is a factorisation
based scheme proposed in [24]. Column five corresponds to the scheme from Theorem
4.1 with r = k.

In vHP scheme, given the security parameter ,(l δ), first K = max ,(l δ) is found
and then the prime p is chosen such that log p ≥ K. The value of q is chosen such that
p |q − 1 and (q − 1)/p be upper-bounded by a polynomial in K (page 237 and 238 [18]).
Since the sizes of p and q can be independently chosen, we use K̂ to denote log2 q.

In the factorisation scheme of [26], the security level of the sender, δ, satisfies τ =
�̂+ δ where τ is the bundling degree (which determines the number of secret key pre-
images for a particular public key image) and ρ̂2 is the size of the message space.
Security parameter of the receiver, l , is determined by the difficulty of factoring the
modulus n (where n = pq and p and q are both prime numbers). Now for a given pair of
security parameters, ,(l δ), the size of the modulus

l
N is determined by l but deter-

mining τ requires knowledge of the size of the message space. Assume�̂= log2 p ≈
log2 q =

l
N /2. This means that τ = δ +

l
N /2. Now the efficiency parameters of the

system can be given as shown in the table. In particular, the sizes of secret and public
keys are 2(τ + )

l
N and

l
N2 respectively.

In RSA-based FSS scheme [23], τ is the bundling degree and is defined as τ = log2

∅ (n), and security of the receiver is determined by the difficulty of factoring n (where n
= pq and p and q are both prime numbers). This means that τ ≈ log2 n. To design a
system with security parameters ,(l δ), first

l
N , the modulus size that provides security

level l for the receiver is determined and then K = max (δ, )
l

N . The modulus n is
chosen such that log2 n = K. With this choice, the system provides adequate security for
sender and receiver.

In the factorisation scheme of [24], the security level of the sender is log2 q. Secu-
rity level of the receiver is determined by the difficulty of discrete logarithm in *

PZ and
factorisation of n. First

l
N , which is the modulus size for which factorisation has

difficulty is chosen. Then K = 







σ

N
,

2
max l is calculated. Since the size of P can

be chosen much greater than log2 n, we use K̂ to denote log2 P.
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Table 1. Efficiency parameters comparison.

vHP[25] Fact.[26] RSA[23] Fact.[24] Our scheme
Message Size K K K 2K r2K

Length of Secret Key 4K 4K + 2δ 4K 4K 4rK

Length of Public Key 2 K̂ 2K 2K 2 K̂ 2r K̂

Length of Signature 2K 2K+δ 4K 2K 2rK
Underlying Security

Assumption
DL Fact Fact Fact & DL DL

As pointed out in Example 3.1, if r = k = 1, then our scheme coincides with vHP scheme.

Efficiency with respect to the message-length We also need to consider the relative
lengths of the message and the signature. If the lengths of the signature and the mes-

sage are denoted by |y| and |x| respectively, then ρ =
||

||

y

x is a measure of communication
efficiency of the scheme.

As pointed out in Table 1, in vHP scheme messages are of length log2 p and signa-
tures are of length 2log2 q. This means that ρ = 2

1
and so for every bit of authenticated

message, 2 bits of signature are required. In our scheme, messages and signatures are of
size r2log p and 2rlog p, respectively and so ρ = 2

r
. Our scheme is the only FSS that

allows ρ to change with parameters of the system. Table 2 summaries these results.

Table 2. Comparison of communication efficiency with respect to the message-length.

vHP[25] Fact.[26] RSA[23] Fact.[24] Our scheme

ρ 2

1
< 2

1

4

1
1 2

r

Signing long messages To sign long messages one can use (i) our proposed FSS, or (ii)
hash-then-sign approach using one of the existing FSS. In the following we compare
two schemes: one based on the construction presented in this paper, and the other one
using vHP scheme and a provably secure hash function proposed in [3, 5]. The hash
function requires on average one multiplication for each bit of the message, and the size
of the hash value is equal to the size of the modulus. We assume that the length of the
message is r × kK bits for some integers r and k such that r ≥ k, K= log2 p and K̂ = log2 q.

The table shows that signing using the new construction is K/2 times faster, while
verification is approximately rk/2 times slower. For example, to achieve adequate se-
curity [15], we choose K = 151 bits and K̂ = 1881 bits [15]. Also to simplify the com-
parison, we assume r = k. To sign a 1 megabyte message using hash-then sign approach
(i.e. using vHP scheme with a secure hash function proposed in [5]), the number of mul-
tiplications required for signing and testing are 1,065,458 and 302, respectively. How-
ever, by using the proposed approach, the number of multiplications required for signing
and testing are 14,112 and 1,090,824, respectively. This asymmetry between the
amount of computation required for signing and verification is useful in applications
where the signer has limited computing power, for example using a smart card, and the
verifier has a powerful server, for example a bank.
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Table 3. Complexity of the two FSS approaches for signing long messages.

Hash-then-sign approach* Our Scheme
Sign (number of multiplications) ≈ rkK + 2 2rk
Test (number of multiplications) ≤ 2K ≤ (2 + k)rK

Length of Secret Key 4K 4kK

Length of Public Key 2 K̂ 2r K̂

Length of Signature 2K 2rK

Underlying Security Assumption
Collision-Resistant Hash

Function & DL
DL

Note: * Hashing uses a provably secure hash function proposed in [3, 5] and signing is by us-
ing vHP scheme [25].

6. THRESHOLD FAIL-STOP SIGNATURE SCHEMES

An attraction of using linear A-codes to construct FSS schemes is their flexibility.
Because of the algebraic properties of the linear A-codes such FSS, schemes can be eas-
ily extended to distributed environments. In the following we show how to construct a
threshold FSS scheme based on the proposed linear scheme.

Threshold cryptography, and in particular, threshold signature, was independently
invented by Desmedt [6], Boyd [2], Croft and Harris [4]. The main goal of threshold
cryptography is to replace a system entity, such as a transmitter, in a classical cryptosys-
tem with a group of entities sharing the same power. A threshold cryptosystem must
remain secure not only under the attacks on the original cryptosystem, but also from new
types of attacks that are introduced because of the distributed structure of the system.

In a (k, n) threshold signature scheme [8], signature generation requires the collabo-
ration of at least k members of a set of n signers. Although construction of threshold
signature schemes generally uses a combination of secret sharing schemes and signature
schemes, as noted in [7], a simplistic combination of the two primitives could result in a
completely insecure systems that allows the members of an authorized group to recover
the secret key of the signature scheme. In a secure threshold signature scheme the
power of signature generation must be shared among n signers in such a way that k sign-
ers can collaborate to produce a valid signature for any given message, whilst no subset
of fewer than k participants can forge a signature.

Similarly, an FSS scheme is called a (k, n) threshold FSS scheme if the role of the
signer in an FSS scheme is replaced by n polynomially bounded signers in such a way
that key generation, signature generation and proof of forgery require the collaboration of
at least k signers. We will present an efficient (k, k) threshold FSS scheme by modify-
ing our previous construction of a single signer. We then discuss the possibility of its
extension to the (k, n) case.

6.1 (k, k) Threshold FSS Schemes

We construct a (k, k) scheme with k signers P1, …, Pk. Again we assume that (S, τ,
ε) with authentication mapping f is a linear A-code. The scheme works as follows:
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• Prekey Generation: The center selects primes q and p such that p |q−1 and a cyclic
subgroup Hp of *

qF with order p such that the discrete logarithm over Hp is hard.
He also chooses two elements g, h ∈ Hp, and publishs (p, q, g, h).

• Key Co-Generation: Each signer Pi chooses a secret key sk(i) which consists of
two authentication keys of a linear A-code (S, τ, ε) over Fp, that is, sk(i) = (e(i),
e'(i)), e(i), e'(i) ∈ ε. We write

e(i) = [e1(i), …, eu(i)], e'(i) = [e'1(i), …, e'u(i)], ∀ej(i), e'j(i) ∈ Fp.

Then Pi broadcasts to other signers

ge(i)
�he'(i) = ],,[ )()()()( 11 ieieieie '

uu
'

hghg K (mod q)
= [pk1(i), …, pku(i)].

The group public key is

∏∏
==

=
k

i
u

k

i

ipkipkpk
11

1 )].(,),([ K

• Co-Sign: To sign a message s ∈ S, each signer Pi applies the authentication code
(S, τ, ε) to generate two authentication tags t(i) and t'(i) corresponding to the key
e(i) and e'(i). That is, the (partial) signature for a message s of Pi is

(s, f(s, e(i)), f(s, e'(i))) = (s, e(i)s, e'(i)s) (mod p)
= (s, t(i), t'(i))
= (s, [t1(i), …, tv(i)], [t'1(i), …, t'v(i)]),

and is (s, t(i), t'(i)) broadcast to other users. The final signature for the group is

(t, t') = ∏ ∏ ∏∏
= = ==
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k
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1 )])(,),([)],(,,)(([ KK (mod p).

• Test: exactly the same as the construction in Section 3 for the single case.
• Proof of Forgery: exactly the same as the construction in Section 3 for the single

case.

Theorem 6.1 Under the assumption that the discrete logarithm is intractable, the above
scheme is (k, k) threshold FSS scheme.

Proof: Completeness and soundness directly follow from the description of the scheme.

We are left to prove that any up to k − 1 signers cannot generate a valid signature.
The proof of security is by using a simulation argument for the view of the adversary,
and showing that an adversary who has access to all the key information of the corrupted
signers and the signature on s could generate by itself all the other public information
produced by the protocol. Without loss of generality, assume that an adversary � has
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corrupted the first k − 1 signers P1, …, Pk-1 and has learned their secrets. We give a
simulator SIMU for our scheme. The input to the simulator SIMU is the message s and
its signature (s, (t, t')). However, the secret information held by Pk is never exposed and
is not simulated.

The SIMU works as follows.

1. Key Co-Generation
• Choose ,))1(),1(()),1(),1(( εRk'e~ke~'e~e~ ×∈−− �K where

11,)(~),(~)],(~,),(~[)('~)],(~,),(~[)(~ '''
11 −≤≤∀∈∀== kiFieieieieieieieie pjjuu KK ;

• Compute the ‘broadcast’ key of Pi, ∀1 ≤ i ≤ k − 1:
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At the end the simulation in this phase, each Pi, 1 ≤ i ≤ k − 1, holds a ‘simulation’
version of the execution of the protocol of Key Co-Generation. We use notation ã
in the simulation corresponding to a in the execution of the protocol.

2. Co-Sign:
• Compute the partial signatures
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for all 1 ≤ i ≤ k − 1.
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It is straightforward to verify that the view of adversary � on execution of the protocol,
and its view on execution of SIMU are statistically indistinguishable, and the result fol-
lows. �

In the above (k, k) scheme, the size of each signer’s key, the size of the public key
and the length of the signature are exactly the same as the single signer scheme and so is
very efficient.
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6.2 Extensions

Proof of forgery In the above scheme, proving forgery requires collaboration of all the
signers. That is, each signer must submit his partial signature and the correct signature
of the signers on the message must be constructed. By showing two different signatures
that pass the verification test, the signers can prove that a forgery has happened. All the
signers must honestly participate in proving forgery, and if only one of them does not
submit his correct partial signature the forgery cannot be proved. An open question is
how to design systems in which the forgery can be proved if some of the users do not
take part in the proof of forgery. The best example is when a single honest signer can
provide proof of forgery.

(k, n) Schemes A natural extension of (k, k) schemes are (k, n) schemes where col-
laboration of k out of n signers is required. Specifically, any k out of n signers can gen-
erate a signature and prove forgery if a forged signature is found. Using the standard
approach in threshold cryptography, we can convert an FSS scheme to a (k, n) FSS by
splitting the secret key of the FSS into n signers using a (k, n) secret sharing scheme.
The system can be designed with or without a trusted third party. If we assume a secure
channels exists between participants, then the (n, n) scheme in this paper can be con-
verted to a (k, n) scheme using cumulative arrays [11].

7. CONCLUSIONS

We introduced a new class of A-codes called linear A-codes, and used it to con-
struct an FSS which allows efficient signature generation of long messages. An impor-
tant property of the FSS scheme is that ρ is a design parameter of the system and so by
designing systems with small ρ, arbitrary length messages can be directly signed without
the need to use a hash function.

We also showed that it is possible to use the code to construct a distributed FSS
system. We described a construction for a (k, k) thresholds scheme and discussed its
extension to (k, n), n > k scheme.
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