
Comparing and debugging firewall rule tables

L. Lu, R. Safavi-Naini, J. Horton and W. Susilo

Abstract: Firewalls are one of the essential components of secure networks. However, configuring
firewall rule tables for large networks with complex security requirements is a difficult and error
prone task. A method of representing firewall rule table that allows comparison of two tables is
developed, and an algorithm that determines if two tables are equivalent is provided. (That is
the set of packets that are permitted by the two tables are the same.) How such algorithm can
assist system administrators to correctly implement organisational policy is discussed. The pro-
posed approach is implemented and the results of the experiments are shown.
1 Introduction

In battle against network attacks, firewalls have played one
of the most important roles. A firewall protects networks
against malicious attacks by filtering out the unwanted
network traffic from the traffic entering the secured
network. The filtering decision is made using a table of
rules written by the administrator and capturing organis-
ational security policy [1].
Translating a high-level security policy written in a

natural language into firewall rule tables, a much lower-
level description of the policy, is an error prone task.
One approach for providing higher assurance about cor-

rectness of the rule table is to have two independent
implementations of the rule table from the original policy,
and compare the two tables. If the two tables are ‘equival-
ent’, that is permit (and deny) the same set of packets,
one concludes that it is very likely that the policy is cor-
rectly implemented. On the other hand if the two tables
are not equivalent, it is desirable to be able to ‘debug’ the
rule tables, that is, locate rules that have resulted in incon-
sistency between the tables. Such rules may exist for
reasons such as ambiguity in the description of the high-
level policy, and can be effectively addressed if the
in-equivalence of the two tables can be localised.
A similar question arises when firewall rules need to be

adjusted. Adding a new rule, or changing an existing rule,
is often required because of policy changes or in response
to a discovered security flaw. A new rule is added to a fire-
wall to permit a new set of packets, or stop a set of permitted
packets. The new rule may be added at the top of the table,
or at an intermediate point. The new set of packets that are
permitted (or denied), although not explicitly matched by a
single rule in the original firewall table, may have been
implicitly covered by the combination of existing rules, so
the new rule was not really necessary. (This may indicate
incorrect implementation of an existing table, especially
if the new rule is positive and specifies packets that
have been unintentionally permitted by existing rules.)

The Institution of Engineering and Technology 2007

doi:10.1049/iet-ifs:20060171

Paper first received 24th December 2006 and in revised form 19th June 2007

The authors are with Centre for Information Security Research, School of
Information Technology and Computer Science, University of Wollongong,
Wollongong, NSW, Australia

E-mail: ll97@uow.edu.au
IET Inf. Secur., 2007, 1, (4), pp. 143–151
Therefore it is important to investigate the effect of the
addition of new rules by determining the set of packets
that are permitted (or denied) ‘only’ because of the new
rule.
In this paper, we give a systematic method of answering

questions such as the above. For a rule table T, we construct
a new table T0 that consists of only positive, non-
overlapping rules. We start from the first rule in the table
and examine rules one by one, replacing each with what
we call the ‘effective part’ of the rule. The resulting table
T0 has the property that (1) it permits the same packets as
T, and (2) the set of permitted packets is partitioned into dis-
joint subsets, each corresponding to a distinct rule. Because
of these properties, the order of rules in T0 is not important
anymore and the information is effectively encoded into the
structure of rules.
We use this new representation to compare two tables and

in particular answer questions such as the equivalence of
two tables, or the effect of adding rules to a table: to
verify that a table T1 permits (or denies) the same packets
as table T2, we convert the two tables into their correspond-
ing new forms, T 0

1 and T 0
2, respectively, and verify if T 0

1 is
equivalent to T 0

2. If the two are not equivalent, the new rep-
resentation can be used to find rules in the original tables
that cause the conflict (Section 4).
When adding a new rule r to table T, an extended table Tr

is constructed. The rule is redundant if T 0 ¼ T 0
r where T

0
r is

representation of Tr in the new form. For non-redundant
rules the new form can be used to determine the set of
packets that are permitted (or denied) ‘only’ because of r.
We implemented algorithms that allow the equivalency

of two tables to be checked and provide a GUI prototype
that can answer questions like the above using the proposed
method, and demonstrated in a case study its application for
comparing and debugging firewall rule tables.

1.1 Related work

Management tools for developing firewall rule tables have
found much attention in recent years. Modelling languages
that are more expressive and closer to natural language than
firewall rules alleviate the error-prone translation tasks
[2–4]. On the other hand, less attention has been paid in
particular to the problem of comparing firewall rules and
rule tables.
Hazelhurst et al. [5, 6] provided an approach to compare

firewall rule tables using binary decision diagrams (BDD).
143

A rule table is converted into a Boolean expression, which
can be compactly and uniquely represented by a BDD. The
uniqueness of BDD is an important property that allows us
to determine the equivalence of rule tables by comparing
their BDD representations. Rule tables are represented as
Boolean expressions and so Boolean operations can be
used to answer questions such as the equivalence of two
tables and determining packets that are accepted by one
table but not the other.
BDD representation does not preserve the original form

and order of rules and so although it can be used to deter-
mine equivalence of two tables, it cannot determine the con-
flicting rules. This is an important advantage of the
approach proposed in this paper.
Al-Shaer and Hamed [7, 8] provided a tool to assist in

inserting or editing rules in a rule table. An inserted rule
is compared sequentially with each rule in the table to
ensure that the set of packets it matches is not in the mean-
time already matched by any preceding rule such that the
insertion would not have been necessary, which is usually
considered an error. A similar approach is applied to rule
edition. However, it is often the case that the packets
matched by the new rule, although not explicitly matched
by a single existing rule, may have been matched by a com-
bination of existing rules and so the new rule need not be
added. The approach proposed in this paper detects such
cases and so enhances Al-Shaer and Hamed’s work.
The rest of the paper is organised as follows. Section 2

presents related background knowledge on firewall rules
and rule tables. In Section 3, we give a formal yet intuitive
definition of equivalence between firewall rule tables, as
well as some other fundamental definitions. In Section 4,
we present a theorem and a set of algorithms to determine
whether two rule tables are equivalent, and locating the
rules that permit packets denied by the other rule table in
the case that inequality holds. In Section 5, we provide a
GUI prototype written in Java, along with a complete
example of applying the prototype to compare and debug
firewall configurations. Section 6 concludes the paper.

2 Firewall background

In the rest of this paper, protocol means transport layer pro-
tocol such as TCP or UDP. Let SrcIPAd, DestIPAd, SrcPort,
DestPort, Protocol denote source IP address, destination IP
address, source port number, destination port number and
protocol, respectively. Let [a, b] denote the set of
numbers x between a and b; that is, a � x � b. Then
SrcIPAd, DestIPAd [[1, 2322 1], SrcPort, DestPort [
[1, 2162 1] and Protocol [fTCP, UDPg. We also
use [X] to denote a specific range of numbers that can be
assigned to element X, for example, [IP] represents the
range of legal IP addresses. We assume a packet can be
represented in the following form

(SrcIPAd, DestIPAd, SrcPort, DestPort, Protocol)

Table 1: Firewall rule table using both negative and
positive rules

Rule

number

Source IP

address range

Destination IP

address range

Service Action

1 192.168.13.10 192.168.13.11 HTTP drop

2 192.168.13.0/24 any HTTP pass
144
Let P denote the set of all packets. It can be seen that P is
a finite set of size jPj ¼ 232 � 232 � (2162 1)
� (2162 1) � 2.

2.1 Firewall rules

A firewall filters packets based on fields defined in the
network and/or transport layer, including source IP
address ([SrcIPAd]), destination IP address ([DestIPAd])
and service (Srv).
[SrcIPAd] and [DestIPAd] specify an acceptable range of

source/destination IP addresses, respectively. Srv is the
combination of protocol, source port number and destina-
tion port number. Note that the source port number is
rarely significant, and commonly any source port is accep-
table. Each rule is associated with an action (Act) field,
the value of which is either ‘pass’ or ‘drop’, indicating
whether a packet is passed or dropped when it is matched
by this rule. Rules with the pass/drop action are referred
to as positive/negative rules, respectively.
There may also be other relevant fields, such as the rule

number (rn) that identifies the order of rules. In general, a
firewall rule can be presented as a 4-tuple ([SrcIPAd],
[DestIPAd], Srv, Act).
A rule r specifies a subset Pr # P of packets that it

matches. A packet p is matched by a rule r (and so p [Pr)
if SrcIPAdp [[SrcIPAdr], DestIPAdp [[DestIPAdr] and
the combination of (Protocolp, SrcPortp, DestPortp) ¼ Srvr.
When a packet arrives at the firewall, it is mapped into the

form of firewall rules and then matched against the firewall
rule table. The first rule that matches the packet will deter-
mine the action on the packet. For example, if a packet p is
matched by two rules r and r0 where r0 precedes r in the
order, then r0 will be applied to p but r will not. If p is
matched by multiple rules preceding r, then which rule
will be applied to p depends on the order of the matching
rules. If no preceding rule matches p, then r will be
applied to p.
We use fRg to denote the set of packets to which rule R is

applied. These are the packets for which R is the first rule
matched in the rule table. In general, fRg # PR – that is,
the set of packets to which R is applied is a subset of the
set of packets that R matches.

2.2 Firewall rule table

A firewall rule table, T, is an ordered set of rules, and spe-
cifies a set of packets PT that are passed by the rule table.
We use (R1, R2, . . . , Rn) to denote a rule table consisting
of rules R1, R2, . . . , Rn in order.
Let Match(p, T) denote a function that takes a packet p

and a rule table T and returns the first rule that matches p.
This rule, denoted by rp,T, is the rule that will be applied
to the packet p. There can be more rules that match p but
only rp,T will be applied to p.
A firewall defaults to accept or drop packets not

matched explicitly. In most situations, firewalls use
‘drop packet’ as the default action so that only packets
that are explicitly permitted are passed by the firewall
[9], and this is the assumed default action in the following
discussion. That being said, if rp,T ¼ f where f denotes
the empty set, T will drop p. As a result, we need not
use negative rules explicitly to drop prohibited packets.
Explicit positive rules are needed to accept legitimate
packets. Negative rules provide readability and compact-
ness for firewall table by denying packets that are per-
mitted by subsequent positive rules. For example,
consider the case that connections from a large block of
IET Inf. Secur., Vol. 1, No. 4, December 2007

network addresses are permitted with the exception of a
small range of addresses in the middle of the larger
block. This can be implemented more compactly using a
negative rule denying traffic from the small range of
addresses followed by a positive rule that permits traffic
from the larger block.

2.3 Example

Consider the firewall rule table shown in Table 1. R1 drops
packets from 192.168.13.10 and to 192.168.13.11 for the
HTTP service so that R2 can be written in a more
compact and readable form.
The rule table presented in Table 1 can be written with

only positive rules as shown in Table 2. It is seen that
Table 1 is more compact and readable (allowing packets
from 192.168.13.0/24 to go anywhere with the exception
that packets from 192.168.13.10 are not allowed to reach
192.168.13.11).
This example shows that the negative rules can be used to

drop a subset of packets matched by subsequent positive
rules, and could make the rule table more compact and read-
able. A negative rule r will not affect the set of permitted
packets if Pr does not have non-empty intersection with
the sets PR1

, . . . , PRi
where R1, . . . , Ri are positive rules fol-

lowing r. That is, a negative rule r will not affect PT if 8Rj,
PRj

> Pr ¼ f, where Rj are positive rules following r.

3 Preliminaries

Definitions: Two firewall rule tables T1 and T2 are
equivalent if PT1

¼ PT2
.

We assume that the firewalls drop all packets by default,
and there is a ‘deny all packets’ at the end of the firewall
rule table. We only need to consider packets that can pass
the firewall. This is because P, the set of all packets, is a
finite set, if PT1

¼ PT2
, then T1 and T2 will also drop the

same set of packets since P2 PT1
¼ P2 PT2

.
A positive rule specifies a set of packets that match the

rule. However, the set of packets that will be permitted by
the rule will also depend on other rules and their order.
Consider a table with rule list (R1, . . . , Rn). A packet p
that matches a rule Ri in the table will be in one of the fol-
lowing categories.

1. p is matched by Ri and at least one rule Rj where j , i. In
this case, p will be dropped or passed depending on Rj being
negative or positive, respectively. In both cases, Ri will not
be applied.
2. p is matched only by Ri but not any rule Rj where j , i.
In this case, Ri will be applied to p and Match(p, T) ¼ Ri.

In the following, we show how a positive rule can be
divided into sub-rules to capture above cases. A rule R 0 is
called a sub-rule of a rule R if PR 0 , PR.
Consider a firewall table with rule list T ¼ (R1, . . . , Rn).
IET Inf. Secur., Vol. 1, No. 4, December 2007
Definition 2: For a rule Ri,

1. R 0
i is the redundant part of Ri with respect to table T if R0

i

is a sub-rule of Ri, and for some positive rule Rj [T, where
j , i, PR 0

i
PRj

. In this case, R 0
i will never be applied and

fR 0
ig ¼ f.

2. R 00
i is the shadowed part of Ri with respect to table T if R00

i

is a sub-rule of Ri, and for some negative rule Rj [T, where
j , i, PR 00

i
PRj

. In this case, R00
i will never be applied and

fRi
0g ¼ f.

3. R 000
i is the effective part of Ri with respect to table T if R000

i is
a sub-rule of Ri, and matches packets that are not matched
by any rule Rj [T, where j , i. In other words,
PR 0 00 ¼ PR2 (PR 0 < PR 00).

If R is written as ([SrcIPAd], [DestIPAd], Srv, pass), then
R0, R00 and R 000 can be written as, respectively, ([SrcIPAd1],
[DestIPAd1], Srv, pass), ([SrcIPAd2], [DestIPAd2], Srv,
pass) and ([SrcIPAd3], [DestIPA3], Srv, pass), where
[SrcIPAd1] < [SrcIPAd2] < [SrcIPAd3] ¼ [SrcIPAd] and
[DestIPAd1] < [DestIPAd2] < [DestIPA3] ¼ [DestIPAd].
This implies that PR ¼ PR 0 < PR 00 < PR 0 00 . The Venn
diagram in Fig. 1 illustrates the relation between R, R 0,
R00, and R 000.
Al-Shaer and Hamed [7] also used the concepts of sha-

dowed and redundant rule in firewall rule tables. Our defi-
nition differs in that a rule Ri is divided into three
sub-rules and the redundant/shadowed relation is defined
between one of the sub-rules and a preceding rule Rj

where j , i, as opposed to between Ri itself and Rj.
A packet p that is matched by R000 implies that p will not

be passed or dropped by any preceding rule in the rule table
and so R will be applied to p. A packet p that is matched by
R0 or R00 will be passed or dropped by a preceding rule in the
rule table and so R will not be applied to it. We have the fol-
lowing properties for R0, R00 and R 000.

A1 A packet p that matches a rule table T is matched by the
effective part of exactly one rule R. That is,
p [PT) (9R [T such that p [PR 0 00) ^ (8r [T we
have r = R) p � Pr 0 00).
A2 Effective parts of rules are positive rules and are associ-
ated with non-overlapping subsets of packets. That is, (8R1,
R2 [T, R1 = R2) PR1

0 00 > PR2
0 00 ¼ f).

A3 It is possible to have PR 0 > PR 00 = f. However,
PR 0 > PR 0 00 ¼ f and PR 00 > PR 0 00 ¼ f.
A4 If p [PR 0 00 , then Match(p, T) ¼ R.
A5 8R [T, PR 0 00 # PT.
A6 8R [T, PR 0 00 ¼ fRg ¼ fR000g and fR0g ¼ fR00g ¼ f.

Given a firewall rule table T ¼ (R1, . . . , Rn), we call
T0 ¼ (r1, . . . , rn) the effective representation of T, where
ri ¼ R000

i if Ri is a positive rule in T, otherwise ri ¼ f.
Slightly abusing notations, if we denote the effective part
of a negative rule by f for negative rules do not enlarge
the set of allowed packets, then T0 can be written as
T0 ¼ (R000

1, . . . , R
000
n).
Table 2: Firewall rule table using positive rules only

Rule number Source IP address range Destination IP address range Service Action

1 192.168.13.10 0.0.0.0–192.168.13.10 HTTP pass

2 192.168.13.10 192.168.13.12–255.255.255.255 HTTP pass

3 192.168.13.0–192.168.13.9 any HTTP pass

4 192.168.13.11–193.168.13.255 any HTTP pass
145

Fig. 1 Venn diagram illustrating R0, R00 and R000

R0 00 is the set of packet ‘only’ matched by R
Definition 3: Consider two firewall rule tables T1 and T2 and
let R denote a rule in T. Assume that both tables are
converted into their effective representations. A rule
R [T1 has equivalent rule set in T2 if there exists a
subset R1, R2, . . . , Rn [T2 such that PR 0 00 # PR 0 00

1
< PR 0 00

2
<

. . . < PR 0 00
n
. Using property A1 this implies that PR 0 00 # PT2

.
The equivalent rule set of a negative rule is defined to be f.
If R [T1 has an equivalent rule set in T2, then packets in

PR 0 00 are also permitted by the equivalent rule set. If R does
not have an equivalent rule set in T2, then not all packets in
PR 0 00 are permitted by T2.

3.1 Example

We use an example to explain the above concepts in details.
Consider the rule table given in Table 3.
For R5, source IP address range 192.168.13.0/

24 ¼ 192.168.13.1–20 < 192.168.13.20–30 < 192.168.13.
31–254. Destination IP address range 192.168.13.0/
24 ¼ 192.168.13.30–40 < 192.168.13.40–50 < 192.168.13.
1–29,51–254.
When packets from 192.168.13.1–20 and to

192.168.13.0/24, or from 192.168.13.0/24 and to
192.168.13.30–40 arrive at the firewall, they will be
matched and passed by R1 and R3. Although R5 also
matches them, it will not be applied. When packets from
192.168.13.20–30 and to 192.168.13.0/24, or from

Table 3: Example of rule table

Rule

number

Source IP

address range

Destination IP

address range

Service Action

1 192.168.13.1–20 any HTTP pass

2 192.168.13.20–30 any HTTP drop

3 any 192.168.13.30–40 HTTP pass

4 any 192.168.13.40–50 HTTP drop

5 192.168.13.0/24 192.168.13.0/24 HTTP pass
146
192.168.13.0/24 and to 192.168.13.40–50 arrive at the fire-
wall, they will be matched and dropped by R2 and R4.
Although R5 also matches them, it will not be applied. As
a result, we can divide R5 as shown in Table 4.
Consider another example as shown in Table 5, it can be

seen that the effective parts of rule R1, R3 and R6 are them-
selves, that is, they have no redundant or shadowed parts.
Comparing Tables 3 and 5, it can be seen that R5 in
Table 3 has equivalent rule set in Table 5, which are R1,
R3 and R6.

4 Comparing firewall rule tables

In this section, we first prove theorems that specify the con-
dition under which two rule tables are equivalent. We then
use these results to give algorithms to determine if two rule
tables are equivalent. If the two table are not equivalent, the
algorithms will locate rules that are causing the conflict, that
is, rules that permit packets that are denied by the second
rule table.
Two firewall rule tables T1 and T2 are equivalent if

PT1
PT2

and PT2
PT1

. Lemma 1 states that the condition
under which packets permitted by T1 is a subset of packets
permitted by T2, that is, the PT1

PT2
condition.

Lemma 1: Let T1 ¼ (R1, R2, . . . , Rn). If all Ri, i ¼ 1, . . . , n
is either negative or has equivalent rule set in T2, then P(R1,

R2,. . ., Rn)
PT2

.

Proof: Theproof is by induction onn, the number of rules inT1.

1. For the first rule R1 in T1 (situation when n ¼ 1).

(a) Assume R1 is positive.

As R1 is the first positive rule, it is apparent that
PR0

1
¼ PR 00

1
¼ f, PR1

¼ PR0 00
1
. Because R1 has equivalent

rule set in T2, according to the definition of equivalent
rule set in Section 3, it can be concluded that PR0 00

1
PT2

.
This implies PR1

PT2
as PR1

¼ PR0 00
1
.

IET Inf. Secur., Vol. 1, No. 4, December 2007

IET Inf. Se
Table 4: Dividing R5 into sub-rules

Sub-rule Source IP address range Destination IP address range Service Action

R0 192.168.13.1–20 192.168.13.0/24 HTTP pass

192.168.13.0/24 192.168.13.30–40 HTTP pass

R00 192.168.13.20–30 192.168.13.0/24 HTTP pass

192.168.13.0/24 192.168.13.40–50 HTTP pass

R0 00 192.168.13.31–254 192.168.13.1–29,51–254 HTTP pass

Table 5: Another example of rule table

Rule number Source IP address range Destination IP address range Service Action

1 192.168.13.31–254 192.168.13.1–29 HTTP pass

2 10.1.1.0/24 10.1.2.0/24 HTTP drop

3 192.168.13.31–100 192.168.13.51–254 HTTP pass

4 10.1.2.0/24 10.1.1.0/24 SMTP pass

5 10.1.2.0/24 10.1.1.0/24 HTTP pass

6 192.168.13.101–254 192.168.13.51–254 HTTP pass

7 any any any drop
Therefore when n ¼ 1, P(R1)
PT2

.

(b) Assume R1 is negative.

By definition, P(R1)
¼ f, which implies that P(R1)

PT2
.

2. Assume that this theorem is true for n2 1 (n � 1), that
is, we assume that if R1, R2, . . . , Rn21 in T1 all have equiv-
alent rule set in T2, then P(R1,R2,. . . ,Rn21)

PT2
.

Now we need to prove that the result is valid for n, that is, we
need to prove that ifR1,R2, . . . ,Rn all have equivalent rule set
in T2, then P(R1,R2, . . . , Rn)

PT2
.

If Rn is negative, then adding Rn to the rule table does not
enlarge the set of packets that are allowed to pass, that is,
P(R1,R2, . . . , Rn21)

¼ P(R1,R2, . . . , Rn)
. Thus, according to the

induction assumption, P(R1, R2, . . . , Rn)
PT2

.
If Rn is positive, then

(a) For8p [PR0
n
or 8p [PR00

n
, if it can pass rule table consist-

ing of (R1, R2, . . . , Rn), then according to Fact 1 of R
0, R00 and

R000, 9R000
k (1 � k � n2 1) such that p [PR0 00

k
. Because Rk has

equivalent rule set in T2 according to our assumption, then
according to the definition of equivalent rule set, PR0 00

k
PT2

,
and hence p can also pass T2.
(b) For 8p [R000

n.

If Rn has equivalent rule set in T2, then according to the defi-
nition of equivalent rule set, PR0 00

n
PT2

, and hence p can also
pass T2.

Finally, combining (1) and (2), we know that the theorem
holds for 8n [N. A

Fig. 2 Finding the effective part of a positive rule
cur., Vol. 1, No. 4, December 2007
Theorem 1: Two firewall rule tables T1 and T2 are equival-
ent if (1) all positive rules in T1 have equivalent rule sets in
T2; and (2) all positive rules in T2 have equivalent rule sets
in T1.

Proof: Let T1 ¼ (R1, R2, . . . , Rn). Since all of R1, R2, . . . ,
Rn have equivalent rule sets in T2, using Lemma 1 we have
PT1

PT2
.

Similarly, we can prove that PT2
PT1

.
Hence, using the definition of equivalent firewall tables,

we have that T1 and T2 are equivalent. A

Theorem 1 gives the condition under which two rule
tables are equivalent. However, it is difficult to examine

Fig. 3 Check the equivalency of two rule tables T1 and T2
147

Fig. 4 Prototype
whether a rule has equivalent rule set in the second table
because of implications discussed in Section 2.1.

Theorem 2: A firewall rule table T and its effective rep-
resentation are equivalent

Proof: Consider the two rule tables T1 ¼ (R1, R2, . . . , Rn)
and T2 ¼ (r1, r2, . . . , rn), where rk ¼ R000

k if Rk is positive,
otherwise rk ¼ f.

1. For each positive Rk, because Pr 0k
¼ Pr 00k

¼ f (otherwise
9s , k such that Prk

> Prs
= f, that is, PR 0 00

k
> PR 0 00

s
= f.

This cannot be true according to Fact 2 of R0, R 00 and
R000), it can be seen that rk ¼ r000k, and R000

k ¼ rk ¼ r000k.
Therefore all positive rules in T1 have equivalent rule set
in T2.
2. For each positive rk, because Pr 0 00k

Prk
¼ PR 0 00

k
,

all positive rules in T2 also have equivalent rule set in T1.
Thus, according to Theorem 1, T1 and T2 are equivalent. A

Theorem 2 can be used to compare two rule tables T1 and
T2. To compare T1 and T2, we need to compare their effec-
tive representation T1

0 with T0
2. Let T1 ¼ (R1, R2, . . . , Rn)

and T2 ¼ (r1, r2, . . . , rm). Then T 000
1 ¼ (R 000

1, R000
2, . . . , R000

n)
and T 000

2 ¼ (r0001, r
000
2, . . . , r

000
m). Since R000

i > R000
j ¼ 1 for all i

and j, for all rules in T1, we need to determine if PR 0 00
i
is

covered by a union of Pr 0 00j
. That is if R000

i has an equivalent
rule set in T0

2. Similarly, for all rules in T2, we need to deter-
mine if an equivalent rule set in T1 exists.
148
4.1 Algorithms to compare firewall rule tables

In this section, we provide two algorithms where the first
one determines the effective part of a rule, and the second
one determines if two tables are equivalent and the rules
that permit packets denied by the other table if inequality
holds.
Fig. 2 finds the effective part of a rule Ri in the rule table

T ¼ (R1, . . . , Rn) where n � i. Fig. 2 finds R 0
i and R 00

i and in
the last step obtains R 000

i from R0
i and R00

i. The figure examines
every Rj (1 � j � i2 1) and accumulates intersections
Ri > Rj (1 � j � i2 1) in R0

i, and hence the part of Ri

which is redundant to at least one preceding positive rule
is put into Ri

0. According to Definition 2, the resulting R 0
i

will be the redundant part of Ri. Similarly, the resulting
R00
i will be the shadowed part of Ri. Therefore R 000

i will the
effective part of Ri. Time complexity required for is
O(n) � b, where b denotes time complexity required for
computation of Rj > Ri, which can be reduced to the
problem of two-dimensional rectangle intersection. A
number of methods for calculation of d-dimensional rec-
tangle intersection is summarised in [10], the best time-
complexity for the two-dimensional case being O(N log N).
The algorithm in Fig. 3 determines if two rule tables T1

and T2 are equivalent. First, using Fig. 2, the rules in T1
and T2 are converted into their corresponding effective
forms. Let T1 ¼ (r1, r2, . . . , rn) and T2 ¼ (R1, R2, . . . ,
Rn). We first construct T0

1 ¼ (r0001, r
000
2, . . . , r

000
n) and T0

2 ¼ (R000
1,
Fig. 5 Example of network setup
IET Inf. Secur., Vol. 1, No. 4, December 2007

R000
2, . . ., R

000
n). Then for each rule r000i in T

0
1, we examine if it has

an equivalent rule set in T0
2. This step is repeated for all rules

in T0
2 and if both steps produce a true results, we conclude

the two tables are equivalent. Correctness of this conclusion
follows directly from Theorem 1 and 2. Time complexity in
relation to the number of rules required for the algorithm in
Fig. 3 is O(n2).
If T1 and T2 are not equivalent, then the algorithm in

Fig. 3 returns the sets of packets permitted only by T1 or
T2 but not both, and also rules that permit these packets.

5 Implementation and a complete example

5.1 Implemenation

We implemented a GUI prototype of the techniques pre-
sented above in Java, which is illustrated in Fig. 4. It can

Table 6: Security policy

Policy description

external hosts can only access the servers

external hosts cannot access any machine in either lab

hosts in the project lab can access everything except the security

lab

hosts in the security lab can only access the web server and other

hosts in the security lab
IET Inf. Secur., Vol. 1, No. 4, December 2007
be seen that the prototype can be used to analyse the effec-
tive parts of rules in a rule table, equivalent rule set in
another rule table, and whether two rule tables are equival-
ent. We will explain in details how this prototype can be
used to compare rule tables and debug firewall configur-
ations with a complete example presented in the following
section.

5.2 Complete example

Consider the campus network configuration illustrated in
Fig. 5. The network consists of three servers accessible
from outside, and two student labs – the project lab and
the security lab. The project lab provides a platform for stu-
dents to carry out daily activities such as browsing Internet
or writing assignments. The security lab is for students
studying network security to perform experiments such as
sniffing or packet spoofing. It is hence desirable to separate
traffic of the security lab from that of the project lab.
The security policy is described in Table 6. Description

of the policy might be ambiguous and not clear at this
stage. This is often an important reason leading to incorrect
translation of network policy into firewall rules. We will
demonstrate later how the prototype can be used to clarify
the ambiguity, and to elicit unstated requirement in policy
description.
Assume that there are a chief administrator and an associ-

ate administrator in the network department. The chief
administrator has more experience and follows ‘who can
access what’ to translate the security policy into firewall
rule table. On the other hand, the associate administrator
Table 7: Rule table by the chief administrator

Rule number Source IP address range Destination IP address range Service Action

1 � � DNS pass

2 111.222.1.200–111.222.1.220 111.222.1.1 SMTP deny

3 � 111.222.1.1 SMTP pass

4 � 111.222.1.2 HTTP pass

5 111.222.1.200–111.222.1.220 111.222.1.3 FTP deny

6 � 111.222.1.3 FTP pass

7 111.222.1.200–111.222.1.220 111.222.1.10–111.222.1.100 � deny

8 111.222.1–111.222.1.3 111.222.1.10–111.222.1.100 � pass

9 111.222.1.10–111.222.1.100 111.222.1.10–111.222.1.100 � pass

10 111.222.1.200–111.222.1.220 111.222.1.200–111.222.1.220 � pass

Table 8: Rule table by the assistant administrator

Rule number Source IP address range Destination IP address range Service Action

1 � 111.222.1.1 SMTP pass

2 � 111.222.1.2 HTTP pass

3 � 111.222.1.3 FTP pass

4 � 111.222.1.10–111.222.1.100 � deny

5 � 111.222.1.200–111.222.1.220 � deny

6 111.222.1.10–111.222.1.100 111.222.1.1 SMTP pass

7 111.222.1.10–111.222.1.100 111.222.1.2 HTTP pass

8 111.222.1.10–111.222.1.100 111.222.1.3 FTP pass

9 111.222.1.10–111.222.1.100 111.222.1.200–111.222.1.220 � deny

10 111.222.1.10–111.222.1.100 � � pass

11 111.222.1.200–111.222.1.220 111.222.1.200–111.222.1.220 � deny

12 111.222.1.200–111.222.1.220 111.222.1.2 HTTP deny
149

Fig. 6 Rule table compare result
has less experience and sequentially translates each item in
the policy description into corresponding firewall rules. The
resulting firewall rule tables are listed in Table 7 and 8,
respectively.
Now we need to compare the rule tables to gain a confi-

dence in their correctness, as well as to explore possible
ambiguity in policy description and incorrect translation
150
of the policy. To compare the rule tables, we first load
them into the prototype, then select ‘Analyse’) ‘Analyse
Equivalence between Rule Tables’ from the menu, as illus-
trated in Fig. 6. The result shows that the rule tables are not
equivalent, because rules 1 and 3 in rule Table 1 and rules
8–10 in rule Table 2 have no equivalent rule set in the
other rule table.
Fig. 7 Rule table compare result
IET Inf. Secur., Vol. 1, No. 4, December 2007

We then select ‘Analyse’) ‘Analyse Eql Rules’ from the
menu to analyse the packets applied to and permitted only by
these rules but not by the other rule table. The prototype
shows us, for each of the above rules, the set of packets
that cannot pass the other rule table, as illustrated in Fig. 7.
By a close look at the rule tables and the results in Fig. 7,
we revealed a number of problems in the policy description
as well as its translation into firewall rules.

1. The policy does not explicitly grant the use of DNS,
which in practise is a pre-requisite for using HTTP and
FTP. The permission to use DNS should be added explicitly
to the policy description to reduce ambiguity.
2. The policy does not mention which hosts the servers can
access. The chief administrator grants them access to the
project lab, but the associate administrator does not. This
conflict should be discussed further and addressed with
department managers.
3. The associate network administrator translates each item
in the policy description into firewall rules in order. By a
mistake in representing ‘external hosts’ with ‘�’, the nega-
tive rules that prohibit external hosts to access the servers
also prohibit hosts in both student labs to access themselves.
By a similar mistake, he also permits hosts in the security
lab to access the SMTP and FTP server.
4. The statement ‘hosts in the project lab can access every-
thing’ in policy description is ambiguous, as ‘everything’
can be taken as ‘everything in the internal network’ or
‘everything including both internal and external network’.
It can be seen that the chief administrator is more rigorous
and take it as ‘everything in the internal network’, whereas
the associate administrator takes the other understanding.

Counter-measures against these problems can be taken
effectively after they are revealed. The prototype can there-
fore assist in clarifying policy ambiguity and debugging
firewall configurations by accurately comparing firewall
rule tables and locating rules that cause inequality.

6 Conclusions

In this paper, we presented an effective technique for com-
paring firewall rule tables. Our technique can not only deter-
mine whether rule tables represented in different forms are
IET Inf. Secur., Vol. 1, No. 4, December 2007
equivalent, but also accurately locate the rules in their orig-
inal form and order that are causing the inequality. Multiple
rule tables written by different administrators to implement
the same security policy can be compared to gain an
increased level of confidence in their correctness when the
rule tables are equivalent; otherwise the rules causing con-
flicts between rule tables can be accurately located, as can
assist in resolving conflicts between rule tables. Our tech-
nique can also be used to analyse changes to a rule table,
and determine whether desired changes are made correctly
by comparing the original rule table and the modified one.
We also implemented our technique with a GUI prototype
written in Java, and demonstrated a complete example of
using the prototype to compare and debug firewall configur-
ations.

7 References

1 Cheswick, W.R., and Bellovin, S.M.: ‘Firewalls and internet security,
repelling the Wily Hacker’ (Addison-Wesley, 1994)

2 Bartal, Y., Mayer, A., Nissim, K., and Wool, A.: ‘Firmato: a novel
firewallmanagement toolkit’. IEEE Symp. Security and Privacy, 1999

3 Lee, T.K., Yusuf, S., Luk, W., Sloman, M., Lupu, E., and Dulay, N.:
‘Compiling policy descriptions into reconfigurable firewall
processors’. Systems, Man and Cybernetics, IEEE Int. Conf., 2003

4 Damianou, N., Dulay, N., Lupu, E., and Sloman, M.: ‘The ponder
policy specification language’. Workshop on Policies for Distributed
Systems and Networks, LNCS, Springer, 2001, vol. 1995, pp. 18–38

5 Hazelhurst, S., Attar, A., and Sinnappan, R.: ‘Algorithms for
improving the dependability of firewall and filter rule lists’. Int.
Conf. Dependable Systems and Networks (DSN 2000), 2000

6 Hazehurst, S.: ‘Algorithms for analyzing firewall, and router access
lists’. Technical report trwitscs-1999, Department of Computer
Science, University of the Witwatersrand, South Africa, 1999

7 Al-Shaer, E.S., and Hamed, H.H.: ‘Firewall policy advisor for
anomaly discovery and rule editing’. IEEE/IFIP 8th Int. Symp.
Integrated Network Management, 2004

8 Al-Shaer, E.S., and Hamed, H.H.: ‘Discovery of policy anomalies in
distributed firewall’. IEEE INFOCOM, Twenty-third Annual Joint
Conf. IEEE Computer and Communications Societies, March 2004,
vol. 4, pp. 2605–2616

9 Strassberg, K., Gondek, R., and Rollie, G.: ‘Firewalls: the complete
reference’ (McGraw-Hill/Osborne, 2002), pp. 84–88

10 Petty, M.D., and Mukherjee, A.: ‘Experimental comparison of
d-rectangle intersection algorithms applied to HLA data
distribution’. Proc. 1997 Distributed Simulation Symp, Orlando, FL,
September 1997, pp. 13–26
151

