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1. INTRODUCTION

Digital signatures, introduced in [1], are the most important
cryptographic primitive for providing authentication in the
electronic world. The original definition of the digital
signature was subsequently revised [2] to ensure security
against a more stringent type of attack known asadaptive
chosen message attack. Despite the stronger requirement,
security in digital signature schemes remains computational
and hence an enemy with unlimited computing power can
always forge a signature. We refer to this type of signature
as anordinarysignature scheme.

In an ordinary signature scheme, if a forgery occurs
the sender must bear its consequences, and there is no
way for him to show that a forgery has occurred. This
is unavoidable; since there is no way of distinguishing
between a forged signature from one generated by the signer,
if the signer is allowed to disavow a forged signature,
he might also disavow his own signature, resulting in
vanishing accountability in the system. This means that the
security for the signer is computational and if the underlying
computational assumption is broken a forged signature can
be irrefutably created. On the other hand the security of the
receivers is unconditional, as verification is a public process.

To provide protection against forgeries of an enemy with
unlimited computational power, fail-stop signature (FSS)
schemes have been proposed [3, 4, 5]. In a FSS, in the
case of forgery, the presumed signer can provide a proof
that a forgery has happened. This is by showing that
the underlying computational assumption of the system is
broken. The system will be stopped at this stage—hence
the namefail-stop. In this way, a polynomially bounded

signer can be protected against a forger with unlimited com-
putational power. We note that an unbounded receiver can
forge a signature but again a proof of forgery shows that the
computational assumption of the system is broken and the
system will be stopped. It can be shown that (Theorem 3.2
[3]) a secure FSS can be used to construct an ordinary digital
signature that is secure in the sense of [2] and so a fail-stop
signature scheme provides a stronger notion of security.

In a FSS there are a number of participants: asigner
who signs a message that is verifiable by everyone with
access to his public key and is protected against forgery of
an unbounded enemy, one or morerecipientsand acentre
who is trusted by the recipient. All the receivers who take
part in the key generation process and are convinced about
the goodness of the key are protected from repudiation of
the signature by the signer. There is another group of
participants, the so-calledrisk bearers, such as insurance
companies, who will bear a loss if a proof of forgery is
accepted and hence a signature is invalidated. For simplicity
we do not make any distinction between a recipient and a
risk bearer.

In a FSS, the signer and the recipients are assumed to
be polynomially bounded, while the enemy is assumed to
have unlimited computational power [6, 7, 8]. A system
may be designed for one or more recipients. It is important
to note that a ‘single recipient’ system only refers to
the protection provided against a signer’s repudiation, and
signature verification (calledtestingin the context of FSS)
can always be performed by anyone who has access to the
public key. That is, a single recipient system can be seen
as an ordinary signature with the added property that a
designated recipient is protected against disavowal of the
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signature by the signer, and the signer is protected against
an all-powerful forger. These kinds of requirements are very
common in electronic commerce systems when a customer
primarily interacts with a single financial institution, such
as a bank. In this case, it is reasonable to assume that the
bank is more powerful and the customer requires protection
against possible forgeries of the bank. At the same time, the
bank must be assured that the signer cannot repudiate his
signature. Using a FSS with a single recipient achieves both
these requirements.

In a single recipient FSS, the role of the trusted centre
is played by the recipient and hence no trusted centre is
required. For a general FSS, eliminating the centre requires
a secure multi-party computation (for example, [4, 9, 10]).

A FSS in its basic form is aone-time digital signaturethat
can only be used for signing a single message. However, it
is possible to extend a FSS scheme to be used for signing
multiple messages [8, 11, 12, 13].

To assess theefficiencyof a FSS scheme a number of
criteria, including the lengths of the signature, the secret key
and the public key, together with the amount of computation
and communication required for signature generation and
verification (testing), are used.

1.1. Previous works

The first construction of fail-stop signature [5] uses a one-
time signature scheme (similar to [14]) and results in bit-by-
bit signing of the message and so is very impractical.

In [15] an efficient single-recipient FSS to protect clients
in an on-line payment system is proposed. The main
disadvantage of this system is that signature generation is
a three-round protocol between the signer and the recipient
and so is very expensive in terms of communication. The
size of the signature is twice the length of the message.

In [8] an efficient FSS that uses the difficulty of the
discrete logarithm problem as the underlying assumption is
presented. In the case of a forgery, the presumed signer
can solve an instance of the discrete logarithm problem, and
prove that the underlying assumption is broken. This is the
most efficient scheme known so far and will be referred to
as thevHP scheme(van Heijst and Pederson).

In [3, 6] a formal definition of FSS schemes is given
and a general construction usingbundling homomorphism
is proposed. The important property of this construction is
that it is provably secure against the most stringent type of
attack, that is, adaptive chosen message attack [16]. The
proof of forgery is by showing two different signatures on
the same message, the forged one and the one generated
by the valid signer. To verify the proof of forgery the
two signatures are shown to collide under the ‘bundling
homomorphism’. An instance of this construction uses
the difficulty of factoring as the underlying computational
assumption of the system [7].

It is shown [3, 6] that the vHP scheme is in fact an
instantiation of this general construction and so has provable
security. This, combined with efficiency, has made the vHP
scheme the benchmark for FSS schemes.

The existence condition for a FSS is relaxed in [7, 9,
17] and it is shown that a FSS only exists if one-way
permutations exist.

In [10], an RSA-based FSS is proposed in which the
underlying intractability assumption is the difficulty of
factoring, and the proof of forgery is by showing the non-
trivial factors of the modulus. In this scheme the size of the
signature is twice that of the vHP scheme (four times the
size of the message) and compared with [8], has equal or
worse performance in all other aspects of interest. The proof
of security is through a number of theorems that bound the
success probabilities of different attackers.

1.2. Our contributions

In this paper, we propose a new FSS scheme that is almost as
efficient as the vHP scheme; its security relies on two well-
accepted computational assumptions, discrete logarithm and
factorization. We introduce a new measure of efficiency that
is related to efficient use of communication bandwidth and
show that our scheme outperforms the vHP scheme (and all
other schemes based on a factorization problem). We prove
that the success chance of an unbounded forger is limited by
the recipient’s security parameter, while the signer’s security
against adaptive chosen message attack is guaranteed to a
level determined by the sender’s security parameter. The
proof of forgery is by revealing the non-trivial factors of
the modulus. We incorporate the idea of embedding groups
from [18] for the construction of our scheme. Finally, we
compare the optimality and efficiency between our scheme
and the vHP scheme.

The paper is organized as follows. In Section 2, we
present the basic concepts and definitions of FSS, and briefly
review the general construction and its relevant security
properties. In Section 3, we present our FSS construction,
show that it is an instance of the general construction [3]
and hence provide complete proof of security. In Section 4,
we introduce the notions of optimality and efficiency, and
give a fair comparison between our scheme and the other
existing schemes based on these notions. Finally, Section 5
concludes the paper.

2. PRELIMINARIES

In this section, we briefly recall relevant notions, definitions
and requirements of fail-stop signatures and refer the reader
to [3, 4, 6] for a more complete account.

2.1. Notation

The length of a numbern is the length of its binary
representation and is denoted by|n|2. p|q meansp

dividesq.
The ring of integers modulo a numbern is denoted by

Zn and its multiplicative group, which contains only the
integers relatively prime ton, by Z∗

n. Let N denote the
natural numbers.
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2.2. Review of fail-stop signatures schemes

Similar to an ordinary digital signature scheme, a fail-stop
signature scheme consists of one polynomial time protocol
and two polynomial time algorithms.

1. Key generation: a two-party protocol between the
signer and the centre to generate a pair of keys, asecret
key, sk, and apublic key, pk. This is different from
ordinary signature schemes where key generation is
performed by the signer individually and without the
involvement of the receiver.

2. Sign: the algorithm used for signature generation. For
a messagem and using the secret keysk, the signature
is given byy = sign(sk,m).

3. Test: the algorithm for testing acceptability of a
signature. For a messagem and signaturey, and
given the public keypk, the algorithm produces anok

response if the signature is acceptable underpk. That

is test(pk,m, y)
?= ok.

A FSS also includes two more polynomial time
algorithms.

4. Proof: an algorithm for proving a forgery.
5. Proof-test: an algorithm for verifying that the proof of

forgery is valid.

A secure fail-stop signature scheme must satisfy the
following properties [3, 6, 7].

1. If the signer signs a message, the recipient must be able
to verify the signature (correctness).

2. A polynomially bounded forger cannot create forged
signatures that successfully pass the verification test
(recipient’s security).

3. When a forger with an unlimited computational
power succeeds in forging a signature that passes the
verification test, the presumed signer can construct a
proof of forgery and convince a third party that a
forgery has occurred (signer’s security).

4. A polynomially bounded signer cannot create a
signature that he can later prove to be a forgery (non-
repudiability).

To achieve the above properties, for each public key, there
exist many matching secret keys such that different secret
keys create different signatures on the same message. The
real signer knows only one of the secret keys, and can
construct only one of the many possible signatures. An
enemy with unlimited computing power can generate all the
signatures but cannot determine which one is generated by
the true signer. Thus, it would be possible for the signer to
provide a proof of forgery by generating a second signature
on the message with a forged signature, and use the two
signatures to show the underlying computational assumption
of the system is broken, hence proving the forgery.

Security of a FSS can be broken if (1) a signer can
construct a signature that he can later prove to be a forgery,
or (2) an unbounded forger succeeds in constructing a

signature that the signer cannot prove is forged. These two
types of forgeries are completely independent, and so two
different security parameters,k andσ , are used to show the
level of security against the two types of attacks. More
specifically,k is the security level of the recipient andσ
is that of the signer. It is proved [3] that a secure FSS
is secure against adaptive chosen message attack and for
all c > 0 and large enoughk, success probability of a
polynomially bounded forger is bounded byk−c. For a FSS
with security levelσ for the signer, the success probability
of an unbounded forger is limited by 2−σ .

In the following we briefly recall the general construction
given in [3] and outline its security properties.

2.3. The general construction

The construction is for a single-message FSS and uses
bundling homomorphisms. Bundling homomorphisms can
be seen as a special kind of hash function.

DEFINITION 2.1. [3] A bundling homomorphismh is a
homomorphismh : G → H between two Abelian groups
(G, +, 0) and(H, ×, 1) that satisfies the following.

1. Every imageh(x) has at least2τ preimages. 2τ is
calledbundling degreeof the homomorphism.

2. It is infeasible to find collisions, i.e. two different
elements that are mapped to the same value byh.

To give a more precise definition, we need to consider two
families of groups,G = (GK,+, 0) andH = (HK,×, 1),
and a family of polynomial-time functions indexed by a
key, K. The key is determined by the application of a key
generation algorithmg(k, τ ), on two input parametersk and
τ . The two parameters determine the difficulty of finding
collisions and the bundling degrees of the homomorphisms,
respectively. Given a pair of input parameters,k, τ ∈ N , a
keyK is calculated first, using the key generation algorithm,
and thenGK , HK and hK are determined. For a formal
definition of bundling homomorphisms see Definition 4.1
in [3].

A bundling homomorphism can be used to construct a
FSS scheme as follows.

Let the security parameters of the FSS be given ask and
σ . The bundling degree of the homomorphism,τ , will be
obtained as a function ofσ as shown below.

1. Prekey generation: the centre computesK = g(k, τ )

and so determines a homomorphismhK , and two
groupsGK and HK . Let G = GK , H = KK and
h = hK .

2. Prekey verification: the signer must be assured thatK

is a possible output of the algorithmg(k, τ ). This can
be through providing a zero-knowledge proof by the
centre or by testing the key by the signer. In any case,
the chance of accepting abadkey must be at most 2−σ .

3. Main key generationgenA: the signer generates her
secret keysk := (sk1, sk2) by choosingsk1 and sk2
randomly inG and computespk := (pk1, pk2) where
pki := h(ski) for i = 1, 2.
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4. The message spaceM is a subset ofZ.
5. Signing: the signature on a messagem ∈ M is

s = sign(sk,m) = sk1 + m × sk2

where multiplying bym is m times addition inG.
6. Testing the signature: can be performed by checking

pk1 × pkm
2

?= h(s).

7. Proof of forgery: given an acceptable signatures′ ∈ G

on m such thats′ 6= sign(sk,m), the signer computes
s := sign(sk,m) andproof := (s, s′).

8. Verifying proof of forgery: given a pair(x, x ′) ∈ G×G,
verify thatx 6= x ′ andh(x) = h(x ′).

Theorem 4.1 in [3] proves that for any family of bundling
homomorphisms and any choice of parameters the general
construction:

1. produces the correct signature;
2. a polynomially bounded signer cannot construct a valid

signature and a proof of forgery;
3. if an acceptable signatures∗ 6= sign(sk,m∗) is found

the signer can construct a proof of forgery.

Moreover, for two chosen parametersk and σ , a good
prekeyK and two messagesm,m∗ ∈ M, with m 6= m∗,
let

T := {d ∈ G|h(d) = 1 ∧ (m∗ − m)d = 0}. (1)

Theorem 4.2 in [3] shows that givens = sign(sk,m) and
a forged signatures∗ ∈ G such that test(pk,m∗, s∗) = ok,
the probability thats∗ = sign(sk,m∗) is at most|T |/2τ ,
and so the best chance of success for an unrestricted forger
to construct an undetectable forgery is bounded by|T |/2τ .
Thus to provide the required level of securityσ , we must
choose|T |/2τ ≤ 2−σ .

This general construction is the basis of all known
provably secure constructionsof a FSS. It provides
a powerful framework by which proving the security
of a scheme is reduced to specifying the underlying
homomorphism and determining the bundling degree and
the setT .

3. A NEW AND EFFICIENT FSS SCHEME

In this section we introduce a new FSS scheme and show
that it is an instance of the general construction. As will
be shown in Section 4, the scheme outperforms the most
efficient known FSS (i.e. the vHP scheme) with respect to
the message length. Proof of forgery is by revealing the
secret factors of a modulus and so verifying the proof is very
efficient.

Firstly, we describe our scheme with a single recipient
model, for simplicity. Then, we extend this model to a
multiple recipient scheme.

Model

There is only a single recipient,R, who also plays the role
of the trusted centre and performs prekey generation of the
scheme.

Prekey generation

Given the two security parametersk andσ , R chooses two
large safe primesp andq. Then,R finds a primeP such
that n = pq dividesP − 1. FinallyR selects an element
α such that the multiplicative order ofα modulo P is p

(ordP (α) = p). α, n andP are sent to the signer via an
authenticated channel. (More details on selection of these
parameters are given below.)

Prekey verification

If the receiver is trusted, the prekey will be accepted by
the signerS and no prekey verification is needed (as in
[8]). On the other hand, if the receiver is not trusted, a
zero-knowledge proof is needed to ensure that the prekey
is correct. This issue will be discussed in the next section
(multiple recipient scheme).

Key generation

S choosesk1, k2 ∈ Zn and computes

α1 = αk1 modP

α2 = αk2 modP.

The private key is(k1, k2) and the public key is(α1, α2).

Signing a messagex

To sign a messagex ∈ Zn, S computes

y = k1x + k2 modn

and publishesy as his signature onx.

Testing a signature

y passes the test if

αy ?= αx
1α2 modP

holds.

Proof of forgery

If there is a forged signaturey ′ which passes the test, the
presumed sender can generate his own signature, namelyy,
on the same message, and the following equation will hold:

αy = αy ′
modP

or

y = y ′ modp

y − y ′ = cp, c ∈ Z.

Hence, a non-trivial factor ofn can be found by computing
gcd(y −y ′, n). We note that the probability ofy being equal
to y ′ is 1/q.
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We make the following remarks on the key generation
algorithm. In [19], it is shown that for a randomly selected
n, P such thatn dividesP − 1 is upper bounded byn log2

2n.
Moreover if |n|2 = k, then on average it takes O(logk)

probabilistic steps to find such aP . An elementα is
selected such that the multiplicative order ofα modP is
p (ordP (α) = p). This element can be easily found by,
for example, randomly choosing an elementα̃ ∈ Z∗

P and
calculatingα = (α̃)cq modP , for c = (P − 1)/n. If α 6= 1,
thenα has orderp. This is in fact ‘pushing’ the element̃α
into a subgroup of orderp.

3.1. Security proof

We show that this scheme is an instance of the general
construction with the following underlying bundling homo-
morphism family.

Discrete logarithm bundling homomorphism

• Key generationg: on inputk andτ , two primesp and
q with |q|2 = τ , and|p|2 ≈ |q|2, a primeP such thatn
dividesP − 1 and|n|2 = k, and an elementα of order
p is chosen. The key will beK = (p, q, α, P ).

• Families of groups: letn = pq. DefineGK = Zn and
HK = Z∗

P .
• The homomorphismh(p,q,αP ) is

h(p,q,α,P ) : Zn → Z∗
P h(p,q,α,P )(x) = αx (modP)

DISCRETE LOGARITHM (DL) A SSUMPTION. [20] Given
I = (p, α, β), wherep is prime, α ∈ Z∗

p is a primitive
element andβ ∈ Z∗

p, where

αa ≡ β (modp)

it is hard to finda = logαβ.

FACTORIZATION ASSUMPTION. [21, 20] Givenn = pq,
wherep andq are prime, it is hard to find a non-trivial factor
of n (without the knowledge ofφ(n) = (p − 1)(q − 1)).

STRONG FACTORIZATION ASSUMPTION. Givenn = pq

(wherep and q are prime), P = tn + 1 (t ∈ Z andP is
also prime) andα (whereordP (α) = p), it is hard to find a
non-trivial factor ofn.

This assumption is also used by Brickell and McCurley
[18] although there is no proof that knowledge ofα of order
p cannot reduce the hardness of factoringn.

THEOREM 3.1.Under DL and strong factorization as-
sumptions, the above construction is a family of bundling
homomorphisms.

Proof. To show that the above definition is a bundling
homomorphism, we must show that:

1. for anyµ ∈ Z∗
P whereµ = αc (modP), there areq

preimages inZn;
2. for a givenµ ∈ Z∗

P whereµ = αc (modP); it is
difficult to find c such thatαc = µ (modP);

3. it is hard to find two valuesc, c̃ ∈ Zn that map to the
same value.

To prove property 1, we note that knowingµ =
αc (modP) for c ∈ Z∗

n and ordP (α) = p, there are exactly
q valuesc′, given byc′ = c + ip, i = 0, . . . , q − 1, for
which αc′ = αc+ip = αc. Hence, there areq preimages of
µ in Z∗

n.
Now given µ = αc (modP), finding c is equivalent

to solving an instance of the DL problem, which is hard
(property 2).

Property 3 means that it is difficult to findc and c̃ such
thatαc = αc̃ (modP). Suppose that there is a probabilistic
polynomial-time algorithmÃ that could compute such a
collision. Then we construct an algorithm̃D that on input
(P, n, α), wheren|P − 1, outputs the non-trivial factors of
n as follows.

First, D̃ runsÃ, and if Ã outputs a collision, i.e.y andỹ,
y 6= ỹ such thatαy ≡ αỹ (modP), thenD̃ computes:

αy = αỹ modP

y = ỹ modp

y − ỹ = ĉp, ĉ ∈ Z

p = gcd(y − ỹ, n).

D̃ is successful with the same probability asÃ and almost
equally efficient. Hence, it contradicts with the strong
factorization assumption.

THEOREM 3.2.Our FSS scheme is secure for the signer.

According to Theorem 4.1 in [3], we must find the size of
the setT :

T := {d ∈ Zn|αd = 1 ∧ (m∗ − m)d = 0}
or

T := {d ∈ Zn|αd = 1 ∧ m′d = 0}
in Z∗

P . There are exactlyq d ’s that satisfy the first equation
αd = 1 modP . Sincem∗ 6= m, we havem′ ∈ {1, 2, . . . ,

n − 1} and so there is a unique message (namelym′ = q)
that satisfiesm′d = 0 (modn). Hence,|T | = 1.

Together with Theorem 4.2 in [3], this implies that it
suffices to chooseτ = σ in the proposed scheme.

3.2. Multiple recipient scheme

We have restricted ourselves to a single recipient, but it is
not difficult to extend the scheme to multiple recipients.
In fact, the only difference in such a case is to include a
trusted centre and provide zero-knowledge proofs that show
that the chosen parameters of the prekey have the correct
forms. That is, we need to ensure thatn, P and α have
the desired forms. Using [22], an elementn can be proved
to be an RSA modulusn = pq, where bothp andq are
safe primes. Then,P is tested for primality. This can
be done by using various primality-testing algorithms such
as the Miller–Rabin probabilistic primality test [20] which
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runs in polynomial time. Finally it is verified thatn divides
P − 1. Although it is easy to show that the order ofα

is a multiple of p (without knowing p, for example by

verifyingαn ?= 1 (modP)), showing that the order is strictly
p needs more effort. We can achieve the zero knowledge
proof of ordP (α) = p by combining the idea mentioned in
Sections 3.2 and 4.2 of [22]. More precisely, the prover has
to prove that he knowsp that satisfiesαp = 1 modP , and
thatp is a prime number. On the other hand, after verifying
this proof, the receiver (or the sender in the context of this

paper) only needs to check whetherαn ?= 1 modP and,
hence, prove thatαp = 1 modP .

4. OPTIMALITY AND EFFICIENCY

The aim of this section is to compare the efficiency of
our proposed scheme with those of the best known FSS
schemes. Efficiency of a fail-stop signature system has been
measured in terms of three length parameters: the lengths
of the secret key, the public key and the signature, and the
amount of computation required in each case. Later in this
section we introduce a new measure, efficiency with respect
to message length, which corresponds to efficient use of the
communication channel. Pedersen and Pfitzmann [3] proved
that if the security level of the sender isσ , andN messages
are to be signed, then the size of length parameters are lower
bounded by(N+1)(σ −1), σ and 2σ −1 respectively. These
bounds do not depend on the security level of the receiver
which is measured by the parameterk and determines the
size of the underlying hard problem(s).

DEFINITION 4.1.A FSS scheme with security parameters
k andσ is calledoptimalwith respect to secret key length,
public key length or the signature length, if the lower bound
on the corresponding parameter is satisfied with equality.

A comparison

To compare two FSSs we fix the level of security provided
by the two schemes, and find the size of the three length
parameters and the number of operations (for example
multiplication) required for signing and testing.

Table 1 gives the results of comparison of four FSS
schemes when the security levels of the receiver and the
sender are given byk andσ respectively. In this comparison
the first two schemes (first and second columns of the table)
are chosen because they have provable security. The first
scheme, referred to as vHP in this paper, is the most efficient
provably secure scheme. The third scheme, whilst it does not
have a complete security proof (although it is not difficult to
construct such a proof), is included because it has an explicit
proof of forgery by revealing the secret factors of a modulus.
Column four corresponds to the scheme proposed in this
paper.

We use the same value ofσ andk for all the systems, and
determine the size of the three length parameters. The hard
underlying problems in all four schemes are DL, subgroup
DL [23] and/or factorization. This means the same level

of receiver’s security (given by the value of parameter
k) translates into different size primes and moduli. In
particular, the security level of a 151-bit subgroup discrete
logarithm with basic primes of at least 1881 bits is the same
as factorization of a 1881-bit RSA modulus [23].

To find the required size of primes in the vHP scheme,
assuming security parameters(k, σ ) are given, firstK =
max(k, σ ) is found and then the primeq is chosen such that
|q|2 ≥ K. The bundling degree in this scheme isq and
the value ofp is chosen such thatq|p − 1 and(p − 1)/q

is upper-bounded by a polynomial inK (pp. 237 and 238
of [6]). The size of|p|2 must be chosen according to the
standard discrete logarithm problem, which for adequate
security must be of at least 1881 bits [23]. However, the
size of|q|2 can be chosen as low as 151 bits [23]. Since|p|2
and|q|2 are to some extent independent, we useK̂ to denote
|p|2.

In our proposed scheme, the bundling degree and hence
the security level of the sender is|q|2. The security of
the receiver is determined by the difficulty of DL inZ∗

P

and factorization ofn. Assume|p|2 ≈ |q|2 ≈ |n|2/2.
Then we first findNk which is the modulus size for which
factorization has difficultyk. Now sinceP ≥ n, DL
in Z∗

P will have difficulty k [23] and we chooseK =
max(Nk/2, σ ), |q|2 = K ≈ |p|2 and P ≥ n. With
these choices the sender’s and receiver’s level of security
is at leastσ andk respectively. For example for(k, σ ) =
(151, 151), we first find N151 = 1881 [23] and choose
K = max(1881/2, 151) = 941 which results in|p|2 ≈
|q|2 ≈ 941 and|n|2 ≈ |P |2 ≈ 1882. Since|P |2 can be
chosen to be much greater than|n|2, we useK̂ to denote
|P |2, and so when|P |2 ≈ |n|2 we haveK̂ ≈ 2K.

In the factorization scheme of [3], the security level of
the sender,σ , satisfiesτ = ρ + σ whereτ is the bundling
degree and 2ρ is the size of the message space. The security
parameter of the receiver,k, is determined by the difficulty
of factoring modn. Now for a given pair of security
parameters(k, σ ), the size of modNk is determined byk, but
determiningτ requires knowledge of the size of the message
space. Assumeρ = |p|2 ≈ |q|2 = Nk/2; this means that
τ = σ +Nk/2. Now the efficiency parameters of the system
can be given as shown in Table 1. In particular the size of
secret and public keys are 2(τ + Nk) and 2Nk respectively.

In the RSA-based FSS scheme [10],τ = |φ(n)|2, and
security of the receiver is determined by the difficulty of
factoringn. This means thatτ ≈ |n|2. To design a system
with security parameters(k, σ ), first Nk , the modulus size
that provides security levelk for the receiver, is determined,
and thenK = max(σ, |Nk|2). The modulusn is chosen
such that|n|2 = K. With this choice, the system provides
adequate security for the sender and the receiver.

Table 1 shows that because of the subgroup DL problem,
K in the vHP scheme can be as low as 151 bits, while in our
scheme it must be at least 941 bits.K̂ in the vHP and our
scheme must be at least 1881 bits [23].

Table 2 shows that the performance of the vHP and our
scheme are nearly the same with respect to the lower bounds
given in [3], and in fact both schemes are nearly (i.e. nearly
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TABLE 1. Comparison of computation (number of multiplications) and efficiency parameters.

DL [8] Factoring [3] RSA [10] Our FSS

PK (mult) 4K 2K 4K 4K

Sign (mult) 2 K 2 1
Test (mult) 3K 2K + σ 3K 4K

Length of SK (bits) 4K 4K + 2σ 4K 4K

Length of PK (bits) 2̂K 2K 2K 2K̂

Length of a signature (bits) 2K 2K + σ 4K 2K

Prekey length K + 3K̂ 3K 3K 2(K + K̂)

Length of a message (bits) K K K 2K

Min size ofK (bits) [23] 151 941 1881 941
Min size ofK̂ (bits) [23] 1881 n/a n/a 1881
Underlying hard problem DL Factoring RSA DL & Factoring

TABLE 2. Comparison between the vHP, our scheme and the
optimal lower bound forN = 1.

DL [8] Our FSS Lower bound

Length of SK 4K = 4σ 4K = 4σ 2(σ − 1)

Length of PK 2K̂ 2K̂ σ

Signature length 2K = 2σ 2K = 2σ 2σ − 1

achieving the bounds) optimal with respect to the signature
length.

Efficiency with respect to the message length

In practice, we need to consider the relative lengths of the
message and the signature. If the length of the signature
and the message are denoted by|y|2 and |x|2 respectively,
ρ̂ = |y|2/|x|2 is a measure of communication efficiency of
the scheme. For example,ρ̂ = 1 means that to authenticate
one bit of information, one bit extra (signature) must be sent
over the channel.

Now, in our scheme messages and signatures are both
from Zn, and soρ̂ = 1. In the vHP scheme messages
and signatures belong to subgroups of sizeq and 2|q|2
respectively. This means thatρ̂ = 2 and so, to authenticate
a one-bit message, a one-bit signature must be used. In
the factorization scheme of [3], messages areρ bits and
signatures arek + ρ + σ bits. Assuming thatk = ρ, then
ρ̂ > 2. In the RSA-based FSS in [10], messages belonging
to Z∗

n and the signature are of size 4|n|2. This means that
ρ̂ = 4.

Table 3 summarizes these results.

Signing long messages

Tables 1 and 3 show that the size of the input to the signature
algorithm in the vHP and our scheme areK and 2K, that is
at least 151 and 1882 bits ([23]) respectively. For messages

TABLE 3. Comparison of communication efficiency with respect
to the message length.

DL [8] Factoring [3] RSA [10] Our FSS

ρ̂ 2 >2 4 1

longer than these sizes a hash-then-encrypt [3] method can
be used. This has two impacts.

• To prove forgery, rather than showing that the
underlying assumption of the scheme is broken, it will
be shown that a collision for the collision-resistant hash
function used for hashing is found.

• The hash function must be based on a computational
assumption. Hash functions with this property,
developed in [12, 24], require on average one modular
multiplication for one bit of the message, and so
drastically reduce the speed of signature generation and
testing.

The above points imply that signing a message of length
` bits, 151< ` < 1882, requires on average` more modular
multiplications compared to our scheme when using vHP.

4.1. Multiple messages

We can extend our scheme to sign more than one message
without changing the key using the method in [8].

Supposet − 1 messages are to be signed. The signer
chooses a secret keyk0, k1, . . . , kt−1 ∈ Z∗

n, and publishes
the corresponding public key

(α0, α1, α2, . . . , αt−1) = (αk0, αk1, αk2, . . . , αkt−1)

whereαi ∈ Z∗
P , i = 0, 1, . . . , t − 1. To sign a message

x ∈ Zn, S computes

y = k0 + k1x + k2x
2 + . . . + kt−1x

t−1 modn.

The signaturey passes the verification test if

αy ?= α0α
x
1αx2

2 . . . αxt−1

t−1 modP.
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Using Theorem 4.4 of [25], it can be proved that the signer
has unconditional security after issuing signatures ont − 1
different messages.

5. CONCLUSIONS

In this paper, we have proposed a new fail-stop signature
scheme that uses two computational assumptions. It
uses discrete logarithm and factorization as the underlying
assumptions for the recipient’s security, and factorization as
the underlying assumption for the proof of forgery. If either
of the two assumptions is broken, a signature can be easily
forged and so the security of the system will be lost.

The proof of forgery is by revealing the non-trivial factors
of the modulus and so results in a fast verification process.
We have shown that the scheme can be extended for signing
multiple messages.

We have compared our scheme with the best known
FSS scheme, namely the vHP scheme, and two other
schemes which are based on the difficulty of factorization.
The comparison clearly shows that our scheme is more
efficient than the other factorization-based schemes, and its
performance is very similar to the vHP scheme.

We have introduced a new measure of efficiency for FSS
that is related to efficient use of communication channel,
and shown that with respect to this measure our scheme
has better performance than the vHP scheme and the FSS
schemes based on factorization. We have shown that
compared to the vHP scheme, our scheme is more efficient
for signing messages of up to 1881 bits.
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