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The security of ordinary digital signature schemes relies on a computational assumption. Fail-
stop signature schemes provide security for a sender against a forger with unlimited computational
power by enabling the sender to provide a proof of forgery if it occurs. In this paper we
give an efficient fail-stop signature scheme that uses two hard problems, discrete logarithm and
factorization, as the basis of a receiver's security. We show that the scheme has provable security
against adaptively chosen message attack, and is the most efficient scheme with respect to the ratio
of the message length to the signature length. The scheme provides an efficient solution to signing
messages up to 1881 bits.
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1. INTRODUCTION signer can be protected against a forger with unlimited com-
putational power. We note that an unbounded receiver can

Digital signatures, introduced in [1], are the most important forge a S|gnature but againa proof of forggry shows that the
cryptographic primitive for providing authentication in the computatllonal assumption of the system is broken and the
electronic world. The original definition of the digital system will be stopped. It can be shown that (Th_eorem_ 3.'2
signature was subsequently revised [2] to ensure security[?’]) asecure F_SS can be_ used to consiruct an ordmary_dlgltal
against a more stringent type of attack knownagsptive s!gnature that is secure in the sense of [2] and so a fgll-stop
chosen message attacPespite the stronger requirement, signature scheme provides a stronger notion of security.
security in digital signature schemes remains computational In @ FSS there are a number of participantssigner
and hence an enemy with unlimited computing power can Who signs a message that is verifiable by everyone with
always forge a signature. We refer to this type of signature access to his public key and is protected against forgery of
as arordinary signature scheme. an unbounded enemy, one or maegipientsand acentre

In an ordinary Signature Scheme’ if a forgery occurs who is trusted by the reCipient. All the receivers who take
the sender must bear its consequences, and there is ndart in the key generation process and are convinced about
way for him to show that a forgery has occurred. This the goodness of the key are protected from repudiation of
is unavoidable; since there is no way of distinguishing the signature by the signer. There is another group of
between a forged signature from one generated by the signerparticipants, the so-calledsk bearers such as insurance
if the signer is allowed to disavow a forged signature, companies, who will bear a loss if a proof of forgery is
he might also disavow his own signature, resulting in accepted and hence a signature is invalidated. For simplicity
vanishing accountability in the system. This means that the We do not make any distinction between a recipient and a
security for the signer is computational and if the underlying fisk bearer.
computational assumption is broken a forged signature can In a FSS, the signer and the recipients are assumed to
be irrefutably created. On the other hand the security of the be polynomially bounded, while the enemy is assumed to
receivers is unconditional, as verification is a public process. have unlimited computational power [6, 7, 8]. A system

To provide protection against forgeries of an enemy with may be designed for one or more recipients. It is important
unlimited computational power, fail-stop signature (FSS) to note that a ‘single recipient’ system only refers to
schemes have been proposed [3, 4, 5]. In a FSS, in thethe protection provided against a signer’s repudiation, and
case of forgery, the presumed signer can provide a proofsignature verification (calletestingin the context of FSS)
that a forgery has happened. This is by showing that can always be performed by anyone who has access to the
the underlying computational assumption of the system is public key. That is, a single recipient system can be seen
broken. The system will be stopped at this stage—henceas an ordinary signature with the added property that a
the namefail-stop. In this way, a polynomially bounded designated recipient is protected against disavowal of the
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signature by the signer, and the signer is protected against The existence condition for a FSS is relaxed in [7, 9,
an all-powerful forger. These kinds of requirements are very 17] and it is shown that a FSS only exists if one-way
common in electronic commerce systems when a customerpermutations exist.
primarily interacts with a single financial institution, such In [10], an RSA-based FSS is proposed in which the
as a bank. In this case, it is reasonable to assume that thainderlying intractability assumption is the difficulty of
bank is more powerful and the customer requires protection factoring, and the proof of forgery is by showing the non-
against possible forgeries of the bank. At the same time, thetrivial factors of the modulus. In this scheme the size of the
bank must be assured that the signer cannot repudiate hisignature is twice that of the vHP scheme (four times the
signature. Using a FSS with a single recipient achieves bothsize of the message) and compared with [8], has equal or
these requirements. worse performance in all other aspects of interest. The proof
In a single recipient FSS, the role of the trusted centre of security is through a number of theorems that bound the
is played by the recipient and hence no trusted centre issuccess probabilities of different attackers.
required. For a general FSS, eliminating the centre requires
a secure multi-party computation (for example, [4, 9, 10]).
A FSSin its basic form is ane-time digital signaturéhat

can only be used for signing a single message. However, it|, this paper, we propose a new FSS scheme that is almost as
is possible to extend a FSS scheme to be used for signingefficient as the vHP scheme; its security relies on two well-
multiple messages [?3* 11,12, 13]. accepted computational assumptions, discrete logarithm and
To assess thefficiencyof a FSS scheme a number of ¢4 ctorization. We introduce a new measure of efficiency that
criteria, including the lengths of the signature, the secretkey i related to efficient use of communication bandwidth and
and the public key, together with the amount of computation g4\ that our scheme outperforms the vHP scheme (and all
and communication required for signature generation and oher schemes based on a factorization problem). We prove
verification (testing), are used. that the success chance of an unbounded forger is limited by
the recipient’s security parameter, while the signer’s security
1.1. Previous works against adaptive chosen message attack is guaranteed to a
. ) , ) level determined by the sender’s security parameter. The
The first construction of fail-stop signature [5] uses a one- proof of forgery is by revealing the non-trivial factors of
time_signature scheme (similar to [_14]) an_d result_s, INDIt-by- the modulus. We incorporate the idea of embedding groups
bit signing of the message and so is very impractical. from [18] for the construction of our scheme. Finally, we

_ In [15] an efficient single-recipi(_ent FSS to protect client_s compare the optimality and efficiency between our scheme
in an on-line payment system is proposed. The main ;.4 the vHP scheme.

disadvantage of this system is that signature generation is 1,4 paper is organized as follows. In Section 2, we

a three-_round protocollbetyveen the signer and-the. reclplentpresent the basic concepts and definitions of FSS, and briefly
a.nd SO IS Very eXpensive in terms of communication. The review the general construction and its relevant security
size of the signature is twice the length of the message. onerfies. In Section 3, we present our FSS construction,
In [8] an efficient FSS that uses the difficulty of the g, that it is an instance of the general construction [3]
discrete logarithm problem as the underlying assumption is 54 hence provide complete proof of security. In Section 4,
presented. I_n the case of a_forgery, the_ presumed Signely e jntroduce the notions of optimality and efficiency, and
can solve an instance of the discrete logarithm problem, andgive a fair comparison between our scheme and the other

prove t?f_at_ the unhderlylrllg assumpftlon IS br(_3|I|<en. T?'S is the oxisting schemes based on these notions. Finally, Section 5
most efficient scheme known so far and will be referred to concludes the paper.

as thevHP schemévan Heijst and Pederson).

In [3, 6] a formal definition of FSS schemes is given
and a general construction usibgndling homomorphism 2. PRELIMINARIES
is proposed. The important property of this construction is ) ) ) ) o
that it is provably secure against the most stringent type of In this section, we brlefly recaII. relevant notions, definitions
attack, that is, adaptive chosen message attack [16]. Thednd requirements of fail-stop signatures and refer the reader
proof of forgery is by showing two different signatures on t© [3, 4, 6] for a more complete account.
the same message, the forged one and the one generated
by the valid signer. To verify the proof of forgery the 2.1. Notation
two signatures are shown to collide under the ‘bundling
homomorphism’. An instance of this construction uses The length of a number is the length of its binary
the difficulty of factoring as the underlying computational representation and is denoted lw|>. plg meansp
assumption of the system [7]. dividesgq.

It is shown [3, 6] that the vHP scheme is in fact an  The ring of integers modulo a nhumberis denoted by
instantiation of this general construction and so has provableZ, and its multiplicative group, which contains only the
security. This, combined with efficiency, has made the vHP integers relatively prime ta, by Z*. Let N denote the
scheme the benchmark for FSS schemes. natural numbers.

1.2. Our contributions
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2.2. Review of fail-stop signatures schemes signature that the signer cannot prove is forged. These two
types of forgeries are completely independent, and so two
different security parameterks,ando, are used to show the
level of security against the two types of attacks. More
specifically, k is the security level of the recipient ard
1. Key generation a two-party protocol between the IS that of the signer. It is proved [3] that a secure FSS
signer and the centre to generate a pair of kegecaet is secure against adaptive chosen message attack and for
key s¢, and apublic key p. This is different from @l ¢ > 0 and large enougk, success probability of a
ordinary signature schemes where key generation is POlynomially bounded forger is bounded by*“. For a FSS
performed by the signer individually and without the With security levelo for the signer, the success probability
involvement of the receiver. of an unbounded forger is limited by 2.
2. Sign the algorithm used for signature generation. For In the following we briefly recall the general construction
a message: and using the secret key, the signature ~ given in [3] and outline its security properties.
is given byy = sign(sg, m).
3. Test the algorithm for testing acceptability of a 2.3. The general construction
signature. For a message and signaturey, and
given the public keypy, the algorithm produces ark
response if the signature is acceptable ungerThat

is testpx, m, y) 2 ok.

Similar to an ordinary digital signature scheme, a fail-stop
signature scheme consists of one polynomial time protocol
and two polynomial time algorithms.

The construction is for a single-message FSS and uses
bundling homomorphismsBundling homomorphisms can
be seen as a special kind of hash function.

DEFINITION 2.1. [3] A bundling homomorphisrh is a
A FSS also includes two more polynomial time homomorphisnk : G — H between two Abelian groups

algorithms. (G, +, 0)and(H, x, 1) that satisfies the following.
4. Proof: an algorithm for proving a forgery. 1. Every imageh(x) has at least2® preimages. 2 is
5. Proof-test an algorithm for verifying that the proof of calledbundling degreef the homomorphism.

forgery is valid. 2. It is infeasible to find collisions, i.e. two different

elements that are mapped to the same valuk. by
A secure fail-stop signature scheme must satisfy the _ ) o )
following properties [3, 6, 7]. To give a more precise definition, we need to consider two

families of groupsg = (Gg, +,0) andH = (Hg, x, 1),

1. Ifthe signer signs a message, the recipient must be ableand a family of polynomial-time functions indexed by a
to verify the signaturedorrectnesy key, K. The key is determined by the application of a key

2. A polynomially bounded forger cannot create forged generation algorithrg(k, T), on two input parametefsand
signatures that successfully pass the verification testz. The two parameters determine the difficulty of finding
(recipient’s security. collisions and the bundling degrees of the homomorphisms,

3. When a forger with an unlimited computational respectively. Given a pair of input parametérsy € N, a
power succeeds in forging a signature that passes thekey K is calculated first, using the key generation algorithm,
verification test, the presumed signer can construct aand thenGg, Hx andhx are determined. For a formal
proof of forgery and convince a third party that a definition of bundling homomorphisms see Definition 4.1
forgery has occurredsigner’s security. in [3].

4. A polynomially bounded signer cannot create a A bundling homomorphism can be used to construct a
signature that he can later prove to be a forgegn¢ FSS scheme as follows.
repudiability). Let the security parameters of the FSS be givehk ard

o. The bundling degree of the homomorphismwill be

To achieve the above properties, for each public key, thereobtained as a function af as shown below.

exist many matching secret keys such that different secret
keys create different signatures on the same message. Thel. Prekey generationthe centre computek = g(k, t)

real signer knows only one of the secret keys, and can and so determines a homomorphigrg, and two
construct only one of the many possible signatures. An groupsGg and Hx. LetG = Gk, H = Kk and
enemy with unlimited computing power can generate all the h=hg.

signatures but cannot determine which one is generated by2. Prekey verificationthe signer must be assured that
the true signer. Thus, it would be possible for the signer to is a possible output of the algorithgik, t). This can

provide a proof of forgery by generating a second signature be through providing a zero-knowledge proof by the
on the message with a forged signature, and use the two centre or by testing the key by the signer. In any case,
signatures to show the underlying computational assumption the chance of acceptingimdkey must be at most?2 .

of the system is broken, hence proving the forgery. 3. Main key generatiorgen,: the signer generates her

Security of a FSS can be broken if (1) a signer can secret keysk := (sk1, sk2) by choosingski andskz
construct a signature that he can later prove to be a forgery, randomly inG and computegk := (pk1, pk2) where
or (2) an unbounded forger succeeds in constructing a pki = h(sk;) fori =1, 2.
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4. The message spastis a subset of. Prekey generation

5. Signing the signature on a messages M is Given the two security parameterando, R chooses two

s = sign(sk, m) = sk1 +m x sk large safe primep andgq. Then,R finds a primeP such
thatn = pqg dividesP — 1. Finally R selects an element

« such that the multiplicative order @f modulo P is p
(ordp(@) = p). a, n and P are sent to the signer via an
pki x pk%' 2 h(s). authenticated channel. (More details on selection of these
parameters are given below.)

where multiplying bym is m times addition inG.
6. Testing the signaturecan be performed by checking

7. Proof of forgery given an acceptable signaturec G
onm such thats’ # sign(sk, m), the signer computes

s = sign(sk, m) andproof := (s, s). Prekey verification
8. \Verifying proof of forgerygiven a pair(x, x') € G x G, If the receiver is trusted, the prekey will be accepted by
verify thatx # x” andh(x) = h(x"). the signerS and no prekey verification is needed (as in

Theorem 4.1 in [3] proves that for any family of bundling [8)). On the other hand, if the receiver is not trusted, a

homomorphisms and any choice of parameters the generaF€ro-knowledge proof is needed to ensure that the prekey
construction: is correct. This issue will be discussed in the next section

. multiple recipient scheme).
1. produces the correct signature; ( P P )

2. apolynomially bounded signer cannot construct a valid
signature and a proof of forgery;

3. if an acceptable signatus& £ sign(sk, m*) is found S chooses, ko € Z, and computes
the signer can construct a proof of forgery.

Key generation

— Sk
Moreover, for two chosen parametdrsand o, a good 1= et modp

prekeyK and two messages, m* € M, with m # m*,
let az = o*2 modP.

T:={deGlhd)=1A@m* —m)yd=0}. (1)

Theorem 4.2 in [3] shows that given= sign(sk, m) and

a forged signature* € G such that tespk, m*, s*) = ok, Signing a message:

the probability thats* = sign(sk, m*) is at most|T|/2%, ]

and so the best chance of success for an unrestricted forgef © SI9n & messagee Z,, S computes

to construct an undetectable forgery is boundedmjy2-.

Thus to provide the required level of security we must

choosgT|/2" < 277. o . and publishes as his signature on.
This general construction is the basis of all known

provably secure construction®f a FSS. It provides

a powerful framework by which proving the security

of a scheme is reduced to specifying the underlying y passes the test if

homomorphism and determining the bundling degree and 7

the setr'. o’ = ajapmodP

The private key igk1, k2) and the public key isa1, a2).

y = k1x + ko modn

Testing a signature

3. ANEW AND EFFICIENT FSS SCHEME holds.

In this section we introduce a new FSS scheme and show,
that it is an instance of the general construction. As will
be shown in Section 4, the scheme outperforms the mostlf there is a forged signature¢’ which passes the test, the
efficient known FSS (i.e. the vHP scheme) with respect to presumed sender can generate his own signature, namely
the message length. Proof of forgery is by revealing the on the same message, and the following equation will hold:
secret factors of a modulus and so verifying the proof is very ,
efficient. o¥ = a” modP

Firstly, we describe our scheme with a single recipient

Proof of forgery

model, for simplicity. Then, we extend this model to a ©f
multiple recipient scheme. y =y modp
Model y=y =, ceZ

There is only a single recipieri®, who also plays the role  Hence, a non-trivial factor of can be found by computing
of the trusted centre and performs prekey generation of thegcd(y — y’, n). We note that the probability of being equal
scheme. toy’is 1/q.
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We make the following remarks on the key generation 3. itis hard to find two values, ¢ € Z, that map to the
algorithm. In [19], it is shown that for a randomly selected same value.
n, P such thak dividesP — 1 is upper bounded byloggn.
Moreover if |n|]2 = k, then on average it takes(I0g k)
probabilistic steps to find such & An elementa is

To prove property 1, we note that knowing =
a‘ (modP) for ¢ € Z} and oreb(a) = p, there are exactly

selected such that the multiplicative order @fodP is q V_aluef’,c/’ gi\ﬁg} byc’ Feor ip, i =0,....q =1, for
p (Ol’dp(a) — p) Th|S element can be eaSi|y found by, Whlcgg = = . Hence, thel’e al’@ pre|mages Of
win Z*.

for example, randomly choosing an elemént Z} and ) . o ) )
calculatingr = (@)% modP, forc = (P — 1)/n. f a # 1, Now_ givenu = a (modP), finding c is eq_uwe_llent
thena has orderp. This is in fact ‘pushing’ the elemet to solving an instance of the DL problem, which is hard
into a subgroup of ordep. (property 2). L , 3
Property 3 means that it is difficult to findand¢ such
thate = «f (modP). Suppose that there is a probabilistic
polynomial-time algorithmA that could compute such a
We show that this scheme is an instance of the generalcollision. Then we construct an algorithim that on input
construction with the following underlying bundling homo- (P, n, «), wheren|P — 1, outputs the non-trivial factors of

3.1. Security proof

morphism family. n as follows. .
First, D runsA, and if A outputs a collision, i.ey andy,
Discrete logarithm bundling homomorphism y # ¥ such thatr” = o> (modP), thenD computes:
e Key generatiorg: on inputk andz, two primesp and o’ = o’ modP
q_V\_/ith lgl2 = 7, and|pl2 & |ql|2, a primeP such thai y = jmodp
dividesP — 1 and|n|2 = k, and an element of order < . ‘ez
p is chosen. The key will b& = (p, ¢, a, P). ymy=epoce
e Families of groups: let = pq. DefineGg = Z, and p=g9gcdy — y,n).
Hyx = Z7%. - ~
e The horrfomorphism(p Py IS D is successful with the same probability 4sand almost
” equally efficient. Hence, it contradicts with the strong
hipgapr):Zn—Zp hipgar(x)=ca" (ModP) factorization assumption. O

DISCRETE LOGARITHM (DL) ASSUMPTION [20] Given THEOREM 3.2.0ur FSS scheme is secure for the signer.

I = (p,a, B), wherep is prime,«a € Z;’; is a primitive According to Theorem 4.1 in [3], we must find the size of
element ang € Z*, where the setr":
o’ = B (modp) T:={d € Zyla? = LA (m* — m)d =0}
it is hard to finda = log, 8. or
FACTORIZATION ASSUMPTION [21, 20] Givenn = pq, T:={deZya’ =1A m'd =0}
wherep andq are prime, it is hard to find a non-trivial factor
of n (without the knowledge @f(n) = (p — 1)(¢ — 1)). in Z%. There are exactly d’s that satisfy the first equation

a = 1modP. Sincem* # m, we havem’ € {1,2,...,
n — 1} and so there is a unique message (namegly= q)
that satisfies’d = 0(modn). Hence|T| = 1.

Together with Theorem 4.2 in [3], this implies that it
suffices to choose = o in the proposed scheme.

This assumption is also used by Brickell and McCurley
[18] although there is no proof that knowledgenxobf order 3.2. Multiple recipient scheme
p cannot reduce the hardness of factoring

STRONG FACTORIZATION ASSUMPTION Givenn = pq
(wherep andg are prim@, P =tn+1(t € ZandP is
also primg anda (whereordp(«) = p), it is hard to find a
non-trivial factor ofn.

o We have restricted ourselves to a single recipient, but it is
THEOREM3.1.Under DL and strong factorization as-  not difficult to extend the scheme to multiple recipients.
sumptions, the above construction is a family of bundling |n fact, the only difference in such a case is to include a

homomorphisms. trusted centre and provide zero-knowledge proofs that show
Proof. To show that the above definition is a bundling that the chosen parameters of the prekey have the correct
homomorphism, we must show that: forms. That is, we need to ensure thatP and« have
the desired forms. Using [22], an elementan be proved
1. foranyu e Zj wherey = a“(modP), there areg to be an RSA modulus = pg, where bothp andg are
preimagesirZ,; safe primes. ThenpP is tested for primality. This can
2. for a givenu € Zj wherep = o(modP); it is be done by using various primality-testing algorithms such
difficult to find ¢ such thatx = u (modP); as the Miller—Rabin probabilistic primality test [20] which
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runs in polynomial time. Finally it is verified thatdivides of receiver’s security (given by the value of parameter
P — 1. Although it is easy to show that the order eof k) translates into different size primes and moduli. In
is a multiple of p (without knowing p, for example by particular, the security level of a 151-bit subgroup discrete
verifying o” 21 (modP)), showing that the order is strictly logarithm with basic primes of at least 1881 bits is the same

p needs more effort. We can achieve the zero knowledge @S factorization of a 1881-bit RSA modulus [23].

proof of ordp () = p by combining the idea mentioned in To flpd the re_quwed size of primes m_the VHP scheme,
Sections 3.2 and 4.2 of [22]. More precisely, the prover has @SSUming security parametefis o) are given, firstk =

to prove that he knows that satisfiest” = 1 modP, and max(k, o) is found and then the primgis chosen such that
that p is a prime number. On the other hand, after verifying 412 = K. The bundling degree in this schemegisand
this proof, the receiver (or the sender in the context of this the value ofp is chosen such that|p — 1 and(p — 1)/¢

2 is upper-bounded by a polynomial K (pp. 237 and 238
EZEEQ Srcl{/ent?](;gi io fgig';wmthﬂ = 1modP and, of [6]). The size of|p|2 must be chosen according to the

standard discrete logarithm problem, which for adequate
security must be of at least 1881 bits [23]. However, the
4. OPTIMALITY AND EFFICIENCY size of|¢ |2 can be chosen as low as 151 bits [23]. Sifde
and|q |2 are to some extent independent, we Ks® denote
Ipl2.

In our proposed scheme, the bundling degree and hence
e security level of the sender jg|,. The security of

e receiver is determined by the difficulty of DL A},

and factorization ofr. Assume|plz ~ |ql2 ~ |n|2/2.
Then we first findN; which is the modulus size for which
factorization has difficultyk. Now since P > n, DL

in Z3 will have difficulty k [23] and we chooseK =
max(Nx/2,0), |ql2 = K =~ |plz and P > n. With

The aim of this section is to compare the efficiency of
our proposed scheme with those of the best known FSS
schemes. Efficiency of a fail-stop signature system has been[h
measured in terms of three length parameters: the Iengthsth
of the secret key, the public key and the signature, and the
amount of computation required in each case. Later in this
section we introduce a new measure, efficiency with respect
to message length, which corresponds to efficient use of the
communication channel. Pedersen and Pfitzmann [3] proved

that if the s_ecurlty level of t_he senderds andN messages these choices the sender’s and receiver’s level of security
are to be signed, then the size of length parameters are IowelrS at leasts andk respectively. For example fak, o) —
bounded byN+1)(o —1), o and & —1 respectively. These (151 151), we first find Nys ': 1881 [23] and’choose
bounds do not depend on the security level of the receiver ’

which is measured by the parameteand determines the |K| :Nméz(l(lfns d]i/n2| 1El)| P:| 9f11\évg|20h Sr?nsclgtls)"”é] :llzn :e
size of the underlying hard problem(s). 912 2 2 ‘ 2

chosen to be much greater thar,, we usek to denote
DEFINITION 4.1.A FSS scheme with security parameters |P|2, and so whehP|z ~ |n|; we havek ~ 2K.
k ando is calledoptimal with respect to secret key length, In the factorization scheme of [3], the security level of
public key length or the signature length, if the lower bound the sendery, satisfiest = p + o wherert is the bundling
on the corresponding parameter is satisfied with equality.  degree and‘2is the size of the message space. The security
parameter of the receivet, is determined by the difficulty
of factoring mod:. Now for a given pair of security
parametergk, o), the size of mov;, is determined by, but
To compare two FSSs we fix the level of security provided determiningr requires knowledge of the size of the message
by the two schemes, and find the size of the three lengthspace. Assumg = |p|2 =~ |g|2 = Ni/2; this means that
parameters and the number of operations (for exampler = o + Ni/2. Now the efficiency parameters of the system
multiplication) required for signing and testing. can be given as shown in Table 1. In particular the size of
Table 1 gives the results of comparison of four FSS secret and public keys aré2+ N;) and 2V respectively.
schemes when the security levels of the receiver and the In the RSA-based FSS scheme [10],= |¢(n)|2, and
sender are given byando respectively. In this comparison  security of the receiver is determined by the difficulty of
the first two schemes (first and second columns of the table)factoringn. This means that ~ |r|;. To design a system
are chosen because they have provable security. The firstvith security parameter&, o), first Ni, the modulus size
scheme, referred to as VHP in this paper, is the most efficientthat provides security levélfor the receiver, is determined,
provably secure scheme. The third scheme, whilst it does notand thenK = maxo, |Nk|2). The modulus: is chosen
have a complete security proof (although it is not difficult to such thatin|, = K. With this choice, the system provides
construct such a proof), is included because it has an explicitadequate security for the sender and the receiver.
proof of forgery by revealing the secret factors of a modulus.  Table 1 shows that because of the subgroup DL problem,
Column four corresponds to the scheme proposed in this K in the vHP scheme can be as low as 151 bits, while in our
paper. scheme it must be at least 941 bit&. in the vHP and our
We use the same value @fandk for all the systems, and  scheme must be at least 1881 bits [23].
determine the size of the three length parameters. The hard Table 2 shows that the performance of the vHP and our
underlying problems in all four schemes are DL, subgroup scheme are nearly the same with respect to the lower bounds
DL [23] and/or factorization. This means the same level given in [3], and in fact both schemes are nearly (i.e. nearly

A comparison
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TABLE 1. Comparison of computation (number of multiplications) and efficiency parameters.

DL [8] Factoring [3] RSA[10] Our FSS
PK (mult) 4K 2K 4K 4K
Sign (mult) 2 K 2 1
Test (mult) X 2K +o 3K 4K
Length of SK (bits) X 4K + 20 4K 4K
Length of PK (bits) X 2K 2K 2K
Length of a signature (bits) R 2K +o 4K 2K
Prekey length K +3K 3K 3K 2(K + K)
Length of a message (bits) K K K 2K
Min size of K (bits) [23] 151 941 1881 941
Min size of K (bits) [23] 1881 n/a n/a 1881
Underlying hard problem DL Factoring RSA DL & Factoring

TABLE 2. Comparison between the vHP, our scheme and the TABLE 3. Comparison of communication efficiency with respect
optimal lower bound fov = 1. to the message length.

DL [8] Our FSS  Lower bound DL [8] Factoring[3] RSA[10] OurFSS

Length of SK K =40 4K =4o 20 —1)
Length of PK X 2K o
Signature length B =20 2K =20 20 —1

2 >2 4 1

>

longer than these sizes a hash-then-encrypt [3] method can
be used. This has two impacts.

achieving the bounds) optimal with respect to the signature ® To prove forgery, rather than showing that the
length. underlying assumption of the scheme is broken, it will

be shown that a collision for the collision-resistant hash
function used for hashing is found.
Efficiency with respect to the message length e The hash function must be based on a computational
assumption.  Hash functions with this property,
In practice, we need to consider the relative lengths of the developed in [12, 24], require on average one modular
message and the signature. If the length of the signature multiplication for one bit of the message, and so

and the message are denoted| by and |x| respectively, drastically reduce the speed of signature generation and
p = lyl2/Ix|2 is a measure of communication efficiency of testing.

the scheme. For examplg,= 1 means that to authenticate o o

one bit of information, one bit extra (signature) must be sent 1 h€ above points imply that signing a message of length
over the channel. ¢ bits, 151< ¢ < 1882, requires on averagenore modular

Now, in our scheme messages and signatures are bottMultiplications compared to our scheme when using vHP.

from Z,, and sop = 1. In the vHP scheme messages _
and signatures belong to subgroups of sizend 2¢/> 4.1. Multiple messages

respectively. This means that= 2 and so, to authenticateé e can extend our scheme to sign more than one message
a one-bit message, a one-bit signature must pe used. INwithout changing the key using the method in [8].
the factorization scheme of [3], messages arbits and Supposer — 1 messages are to be signed. The signer

signatures aré + p + o bits. Assuming that = p, then chooses a secret kdy, k1, ....k_1 € Z*, and publishes
p > 2. In the RSA-based FSS in [10], messages belonging ie corresponding public key

to Z) and the signature are of siz¢nfp. This means that

p=4. (@0, @1, @2, ..., 1) = (@0, &, a2, o)
Table 3 summarizes these results. wheree; € Z%, i = 0,1,....7 — 1. To sign a message
x € Z,, S computes
Signing long messages y = ko + k1x 4+ kox? + ... 4 k,_1x' "I modn.

Tables 1 and 3 show that the size of the input to the signatureThe signaturg passes the verification test if
algorithm in the vHP and our scheme d@eand 2K, that is 7 , .
at least 151 and 1882 bits ([23]) respectively. For messages o =aooqay ...a;_q MmodP.
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Using Theorem 4.4 of [25], it can be proved that the signer
has unconditional security after issuing signatures enl
different messages.

5. CONCLUSIONS

[10]

In this paper, we have proposed a new fail-stop signature [11]

scheme that uses two computational assumptions.

It

uses discrete logarithm and factorization as the underlying
assumptions for the recipient’s security, and factorization as
the underlying assumption for the proof of forgery. If either

of the two assumptions is broken, a signature can be easily

forged and so the security of the system will be lost.

The proof of forgery is by revealing the non-trivial factors
of the modulus and so results in a fast verification process.
We have shown that the scheme can be extended for signing
multiple messages.

We have compared our scheme with the best known [14]

FSS scheme, namely the vHP scheme, and two other

schemes which are based on the difficulty of factorization.
The comparison clearly shows that our scheme is more

efficient than the other factorization-based schemes, and its

performance is very similar to the vHP scheme.
We have introduced a new measure of efficiency for FSS
that is related to efficient use of communication channel, [16]

and shown that with respect to this measure our scheme

[12]

[13]

[15]

has better performance than the vHP scheme and the FSS

schemes based on factorization.

We have shown that[17]

compared to the vHP scheme, our scheme is more efficient
for signing messages of up to 1881 bits.
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