Recursive Lattice Reduction

Thomas Plantard Willy Susilo

Centre for Computer and Information Security Research University of Wollongong

http://www.uow.edu.au/~thomaspl thomaspl@uow.edu.au

Cryptography concerned by Lattice Reduction

Problem

- Shortest Vector Problem (SVP): Ajtai-Dwork, Regev, ...
- Closet Vector Problem (CVP): GGH, NTRU, ...
- Knapsack Problem
- Coding based cryptosystem
- RSA, Factorization.
- Learing With Error (LWE)
- Short Integer Solution (SIS): SWIFFT, SWIFFTX, ...

Lattice Reduction

- Heuristic BUT successful
- Weeks, Month of Computation: Good Estimation.
- 2⁸⁰, 2¹⁰⁰: Unknown.

Outline

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Hermite Factor.
 - Lattice Reduction
- 3 Lattice Reduction in Average
 - Gama-Nguyen Estimation
 - Recursive Lattice Reduction
 - Darmstad Challenge, Dimension 650
- 4 Conclusion

Lattice Theory

- 1 Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Hermite Factor.
 - Lattice Reduction
- 3 Lattice Reduction in Average
 - Gama-Nguyen Estimation
 - Recursive Lattice Reduction
 - Darmstad Challenge, Dimension 650
- 4 Conclusion

Lattice

Definition of a Lattice

• All the integral combinations of $d \le n$ linearly independant vectors over $\mathbb R$

$$\mathcal{L} = \mathbb{Z} \, \mathbf{b}_1 + \dots + \mathbb{Z} \, \mathbf{b}_d = \{ \lambda_1 \mathbf{b}_1 + \dots + \lambda_d \mathbf{b}_d : \lambda_i \in \mathbb{Z} \}$$

- d dimension.
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_d)$ is a basis.

An Example

$$\mathbf{B} = \begin{pmatrix} 5 & \frac{1}{2} & \sqrt{3} \\ \frac{3}{5} & \sqrt{2} & 1 \end{pmatrix} \tag{1}$$

$$d = 2 < n = 3$$

In this work, integer Basis: $B \in \mathbb{Z}^{d,n}$.

4 D > 4 D > 4 E > 4 E > E 99 C

A lattice $\mathcal L$

$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{2}$$

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ -3 & 11 \end{pmatrix} \tag{3}$$

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ 13 & 21 \end{pmatrix} \tag{4}$$

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 29 & 31 \\ 21 & 26 \end{pmatrix} \tag{5}$$

The Shortest Vector and The First Minima

$$\mathbf{v} = \begin{pmatrix} 8 & 5 \end{pmatrix}, \text{ with } \lambda_1 = \sqrt{8^2 + 5^2} = 9.434$$
 (6)

The Shortest Vector

The Determinant

$$\det \mathcal{L} = \sqrt{\det \left(\mathbf{B} \mathbf{B}^{T} \right)} = 103 \tag{7}$$

The Determinant

Hermite Invariant, Constant and Factor.

Hermite invariant

$$\gamma(\mathcal{L}) = \left(\frac{\lambda_1(\mathcal{L})}{\det(\mathcal{L})^{1/dim(\mathcal{L})}}\right)^2 = (\frac{9.434}{103^{1/2}})^2 = 0.86408$$

Random Lattice: $\gamma(\mathcal{L}) \sim \frac{\dim(\mathcal{L})}{2\pi e}$.

Minkowski Theorem 1896

$$\forall \mathcal{L}, \gamma(\mathcal{L}) \leq \gamma_d \leq 1 + \frac{\dim(\mathcal{L})}{4} = 1.5$$

 γ_d is called Hermite Constant.

Hermite Factor of a basis

$$\gamma(\mathbf{B}) = \frac{\|b_1\|}{\det(\mathcal{L})^{1/\dim(\mathcal{L})}}.$$

Capital for Lattice Reduction Quality.

Lattice Reduction Algorithm

Find $v \in \mathcal{L}$ smallest

- SVP is NP-Hard under randomized reduction.
- Deterministic $O(d^{\frac{d}{2e}})$: Kannan 1986, Hanrot and Sthele 2007.
- Probabilistic $O(2^d)$: AKS 2001.

Find $v \in \mathcal{L}$ small

- LLL: Lenstra, Lenstra and Lovasz $O(n^5)$.
- DEEP-k: LLL with Deep Insertion (Exponential time in k).
- BKZ-k: Block Korkine Zolotaref (Exponential time in k).
- ...

Lattice Reduction in Average

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Hermite Factor.
 - Lattice Reduction
- 3 Lattice Reduction in Average
 - Gama-Nguyen Estimation
 - Recursive Lattice Reduction
 - Darmstad Challenge, Dimension 650
- 4 Conclusion

Gama-Nguyen Estimation

Model

An Lattice Reduction Algorithm is able to find a vector $v \in \mathcal{L}$ such that

$$||v|| = c^{dim} \det(\mathcal{L})^{1/dim}$$

where c depends of algorithm quality.

Average beaviour \neq Upper Bound

Algorithm	Average	Upper Bound
LLL	1.0219	1.0754
BKZ-20	1.0128	1.0337
BKZ-28	1.0109	1.0282
DEEP-50	1.011	1.0754
None	1.01	-

Recursive Lattice Reduction

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

Advantage

- Find $\mathcal{L}_{d'}$ where d' is optimal without any extra timing cost.
- Using time computation whenever appropriate only.

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $\dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B} = \begin{pmatrix} 1031 & 0 & 0 & 0 & 0 \\ 354 & 1 & 0 & 0 & 0 \\ 322 & 0 & 1 & 0 & 0 \\ 916 & 0 & 0 & 1 & 0 \\ 426 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 (8)

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_1} = \begin{pmatrix} 1031 & 0 & 0 & 0 & 0 \end{pmatrix} \tag{9}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_2} = \begin{pmatrix} 1031 & 0 & 0 & 0 & 0 \\ 354 & 1 & 0 & 0 & 0 \end{pmatrix} \tag{10}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_2} = \begin{pmatrix} -31 & -3 & 0 & 0 & 0 \\ 13 & -32 & 0 & 0 & 0 \end{pmatrix} \tag{11}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_3} = \begin{pmatrix} -31 & -3 & 0 & 0 & 0 \\ 13 & -32 & 0 & 0 & 0 \\ 322 & 0 & 1 & 0 & 0 \end{pmatrix} \tag{12}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_3} = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 0 & -6 & 13 & 0 & 0 \\ -27 & -11 & -4 & 0 & 0 \end{pmatrix} \tag{13}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_4} = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 0 & -6 & 13 & 0 & 0 \\ -27 & -11 & -4 & 0 & 0 \\ 916 & 0 & 0 & 1 & 0 \end{pmatrix} \tag{14}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $\dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_4} = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ -4 & -3 & 4 & 2 & 0 \\ 4 & 0 & 5 & 5 & 0 \\ 0 & -3 & 4 & -7 & 0 \end{pmatrix} \tag{15}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_5} = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ -4 & -3 & 4 & 2 & 0 \\ 4 & 0 & 5 & 5 & 0 \\ 0 & -3 & 4 & -7 & 0 \\ 426 & 0 & 0 & 0 & 1 \end{pmatrix} \tag{16}$$

Method

- Choose $\mathcal{L}_1 \subset \cdots \subset \mathcal{L}_i \cdots \subset \mathcal{L}_d = \mathcal{L}$ with $dim(\mathcal{L}_i) = i$.
- \mathcal{L}_1 is reduced.
- ullet For each \mathcal{L}_{i+1} , apply Lattice Reduction Algorithm on $\mathcal{L}_{i+1} \cup \mathcal{L}_i$

$$\mathbf{B_5} = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 0 & -2 & 2 & 1 & -2 \\ -2 & -2 & 3 & -3 & 1 \\ -2 & 1 & -1 & 4 & 1 \\ 3 & 0 & 3 & 0 & 5 \end{pmatrix} \tag{17}$$

200

150

Conclusion

- Introduction
- 2 Lattice Theory
 - Lattice Basics
 - Hermite Factor.
 - Lattice Reduction
- 3 Lattice Reduction in Average
 - Gama-Nguyen Estimation
 - Recursive Lattice Reduction
 - Darmstad Challenge, Dimension 650
- 4 Conclusion

Result

Result on the Darmstadt Challenge

Challenge	Previous Best Result	Recursive Reduction Result
500	25.8457	25.2587
525	35.6651	30.7409
550	39.7995	38.2884
575	50.7149	42.7083
600	57.2975	52.0096
625	61.8061	59.4138
650	69.4478*	66.7158
675	82.6015*	80.0937*
700	89.4315*	89.3924*
725	103.7208*	100.8960
750	_*	_

Future Work

Future Work

- Integrate other Lattice Reduction Algorithm
- Use different sublattice choice.

Question.

What can we do with 2^x operation?