Leveraging Textural Features for Recognizing Actions in Low Quality Videos

#### Saimunur Rahman, John See, Chiung Ching Ho

Centre of Visual Computing, Faculty of Computing and Informatics Multimedia University, Cyberjaya 63100, Selangor, Malaysia

RoViSP 2016, Penang, Malaysia

## Visual human actions

- Human actions: major visual events in movies, news, ...
- Low quality videos: low frame resolution, low frame rate, compression artifacts, motion blurring



- We recognize human actions from low quality videos
- Leverage textures with shape and motion features to improve action recognition form low quality videos.

### Motivation

- Recognizing human actions from video is of central importance due to its large real-world application domain:
  - surveillance, human computer application, video indexing etc.
- Many methods have been proposed in recent years but majority are focused on high quality videos that offer fine details and strong signal fidelity.
  - not suitable for real-time and lightweight applications
- Current methods are not designed for processing low quality videos.

## Summary of Approach

- Detect space-time patches by feature detector and describe using shape and motion descriptor.
- Calculate textural features from entire space-time volume.
- Combine shape, motion and textural features to improve performance.

### Summary of Contribution

- Propose textural features to alleviate the limitation of shape and motion features.
- Use BSIF-TOP as a textural feature descriptor for action recognition in low quality videos.
- Evaluate various textural features on low quality videos.

### Related Work

- Shape and motion features
  - Space Time Interest Points [Laptev et al'05]
  - Dense Trajectories [Wang et al.'11]
- Textural features
  - LBP-TOP [Kellokompu et al'09]
  - Extended LBP-TOP [Mattvi and Shao'09]
- Similar approaches
  - Joint Feature Utilization [Rahman et al'15, See and Rahman'15]

### Outline



2 Textural Features



- 4 Evaluation Framework
- 5 Experimental Results



### Shape and Motion Feature Representation

- Spatio-temporal interest points are detected by Harris3D detector [Laptev'05].
- Description of 3D patch around IPs using HOG and HOF [Laptev'08].
  - HOG histogram of oriented gradients (encodes shape)
  - HOF histogram of optical flow (encodes motion)



### Textural Feature Representation

- Three types of textural features are calculated form entire space-time volume:
  - ► LBP Local Binary Pattern [Zhao et al.'08].
  - ► LPQ Local Phase Quantization [Zhao et al.'08].
  - BSIF Binarized Statistical Image Features [Kannala and Rahtu'12].
- To obtain dynamic textures we apply three orthogonal plane (TOP) technique [Zhao et al. '08].
  - Features are calculated from XY, XT and YT plane of space-time volume (XYT).



### Dataset : KTH Action [Schüldt et al'04]

- Total 599 videos captured in a controlled environment.
- 6 action classes performed by 25 actors in 4 different scenarios.
- Sampling rate: 25 fps, Resolution:  $160 \times 120$  pixels.
- Evaluation protocol: original experimental setup by authors.
- Six downsampled versions were cerated (3 spatial  $(SD_{\alpha})$  and 3 temporal  $(SD_{\beta})$  )
  - We limit α, β = {2,3,4}, where α, β denotes spatial and temporal downsampling to half, one third and one fourth of the original resolution or frame rate respectively.



#### Dataset : HMDB51 [Oh et al'11]

- Total 6,766 videos of 51 action classes collected from movies or YouTube.
- Videos are annotated with a rich set of meta-labels including quality information
  - three quality labels were used, i.e. 'good', 'medium' and 'bad'.
- Evaluation protocol: three training-testing split by authors.
- We use the split specified for training, while testing is done using only videos with 'bad' and 'medium' labels; for clarity, we denote them as **HMDB-BQ** and **HMDB-MQ** respectively.



### Evaluation Framework



### Experimental Results: KTH dataset

• Performance (average accuracy over all class) comparison:

| Method                 | $SD_2$ | $SD_3$ | $SD_4$ | $TD_2$ | $TD_3$ | $TD_4$ |
|------------------------|--------|--------|--------|--------|--------|--------|
| HOG/HOF [6]            | 83.33  | 76.39  | 65.74  | 86.11  | 81.94  | 76.85  |
| HOG+HOF [9]            | 84.26  | 80.09  | 75.46  | 87.04  | 80.09  | 81.48  |
| HOG+HOF + LBP-TOP [10] | 87.41  | 80.74  | 77.69  | 87.87  | 82.50  | 80.37  |
| HOG+HOF + LPQ-TOP      | 88.15  | 81.30  | 78.52  | 87.50  | 81.85  | 80.00  |
| HOG+HOF + BSIF-TOP     | 89.07  | 85.00  | 81.67  | 88.52  | 87.04  | 84.91  |

- Best method: HOG+HOF+BSIF-TOP
- Spatially downsampled videos are highly benefited by textural features.
- BSIF-TOP outperform other textural features.

### Experimental Results: HMDB51 dataset

• Performance (average accuracy over all class) comparison:

| Method                 | HMDB-BQ | HMDB-MQ |
|------------------------|---------|---------|
| HOG/HOF [8]            | 17.18   | 18.68   |
| C2 [8]                 | 17.54   | 23.10   |
| HOG+HOF [9]            | 21.71   | 23.68   |
| HOG+HOF + LBP-TOP [10] | 20.80   | 24.20   |
| HOG+HOF + LPQ-TOP      | 23.89   | 28.36   |
| HOG+HOF + BSIF-TOP     | 32.46   | 37.14   |

- Best method: HOG+HOF+BSIF-TOP
- Texture vastly improve the performance of both 'Bad' and 'Medium' quality videos.
- BSIF-TOP outperform other textural features.

### Experimental Results: BSIF-TOP vs. other textures

• Performance improvement by BSIF-TOP over LBP-TOP and LPQ-TOP when aggregated with HOG+HOF:



- LPQ-TOP is better for spatially downsampled videos.
- LBP-TOP is better for temporally downsampled videos.
- Using BSIF-TOP, HMDB-LQ and HMDB-MQ results improves to almost double of baseline.

Rahman, See and Ho

Leveraging Texture for HAR

### Experimental Results: Computational Complexities

• Computational cost (feature detection/calculation + quantization time) of various feature descriptors:

|                | HOG+HOF | LBP-TOP | LPQ-TOP | BSIF-TOP |
|----------------|---------|---------|---------|----------|
| Time (in sec.) | 13.76   | 47.57   | 2.48    | 5.25     |

- Runtime reported using a Core i7 3.6 GHz 32GB RAM machine.
- All test run on a sampled video from KTH-*SD*<sub>2</sub> dataset consist of 656 frames.
- Ranking of descriptors in terms of speed:
  - ► LPQ-TOP > BSIF-TOP > HOG+HOF > LBP-TOP.

### Conclusion

- We leveraged on textural features to improve the recognition of human actions in low quality video clips.
- Considering that most current approaches involved only shape and motion features, the use of textural features is a novel proposition that improves the recognition performance by a good margin.
- BSIF-TOP offers a significant leap of around 16% and 18% on the KTH-SD<sub>4</sub> and HMDB-MQ datasets respectively, over their original baselines.
- In future, we intend to extend this work towards a larger variety of human action datasets.
- It is also worth designing textural features that are more discriminative and robust towards complex backgrounds.

### Acknowledgement

This work is supported, in part, by MOE Malaysia under Fundamental Research Grant Scheme (FRGS) project FRGS/2/2013/ICT07/MMU/ 03/4.

# Thank You!

Q & A

Rahman, See and Ho

Leveraging Texture for HAR

MMU, Cyberjaya 18 / 18