Action Recognition in Low Quality Videos by Jointly Using Shape, Motion and Texture Features

Saimunur Rahman, John See and Ho Chiung Ching

Center of Visual Computing Multimedia University, Cyberjaya

Motivation

- Local space-time features have become popular for action recognition in videos.
- Current methods focus on *high quality videos* which are not suitable for real-time video processing applications.
- Current methods handles various complex video problems (such as *camera motion*) but problem of *video quality* is still relatively unexplored [Oh et al'11].

Goal of this work

- Investigate and analyze the performance of action recognition under two low quality conditions:
 - Spatial downsampling
 - Temporal downsampling
- Joint utilization of shape, motion and texture features for robust recognition of actions from *downsampled* videos.
- Investigate 'good' feature combinations for action recognition in low quality video.

Related Works

- Shape and motion features
 - Space-time interest points [Laptev'05]
 - Dense Trajectories [Wang et al.'11]
- Textural features
 - Local Binary Pattern on three orthogonal planes [Kellkompu et al.'08]
 - Extended Local binary pattern on three orthogonal planes [Mattivi and Shao'09]

Outline

- Spatio-temporal video features
- Action recognition framework
- Video downsampling
- Experiments

Spatio-temporal video features

Action recognition framework

Video downsampling

Experiments

Spatio-temporal video features

- Shape and Motion Features (structures and its change with time)
 - Feature detector Harris3D
 - Feature descriptor HOG and HOF
- Textural Features (change of statistical regularity with time)
 - Feature detector and descriptor LBP-TOP

Harris3D detector [Laptev'05]

- Space-time corner detector
- Capable of detecting any spatial and temporal interest point
- Dense scale sampling (no explicit scale selection)

HOG/HOF descriptor [Laptev'08]

- Based on gradient and optical flow information
 - HOG Histogram of oriented gradients
 - HOF Histogram of Optical Flow
- Detected 3D patch (xyt) is divided into grid of cells
- Each cell is described with HOG and HOF.

LBP-TOP detector + descriptor [Zhao'07]

- Extension of popular local binary pattern (LBP) operator into three orthogonal planes (TOP)
- Encodes shape and motion on three orthogonal planes (XY, XT and YT)
- Calculate occurrence of different plane histograms to form final histogram $(H = h^{XY} \cdot h^{XT} \cdot h^{YT})$

LBP-TOP in action

Spatio-temporal video features Action recognition framework Video downsampling Experiments

Evaluation framework

IEEE ICSIPA '15

Detection + description of features

Bag-of-words representation

Bag of space-time features + SVM with χ^2 kernel [Vedaldi'08]

Training feature vectors are clustered with k-means

Each feature vector is assigned to its closest cluster center (visual word)

IEEE ICSIPA '15

Spatio-temporal video features Action recognition framework Video downsampling Experiments

Video Downsampling

- Spatial downsampling (SD) decrease the spatial resolution.
- Temporal downsampling (TD) reduces temporal sampling rate.

SD Factor	Description
SD ₁	Original Res.
SD ₂	$^{1}/_{2}$ Res. of Original
SD ₃	$^{1}/_{3}$ Res. of Original
SD ₄	$^{1}/_{4}$ Res. of Original

TD Factor	Description
TD ₁	Original F.R.
TD_2	$^{1}/_{2}$ F.R. of Original
TD_3	$^{1}/_{3}$ F.R. of Original
TD_4	$^{1}/_{4}$ F.R. of Original

Fig: Spatially downsampled videos. (a) SD_1 (b) SD_2 (c) SD_3 (d) SD_4 .

Fig: Temporal Downsampling; (a) Original video (b) TD_2 (c) TD_3

Preview of downsampled videos

Original Video

SD₂

SD₃

 SD_4

Ť

TD₂

TD₃

Spatio-temporal video features Action recognition framework Video downsampling Experiments

Datasets

- Two popular publicly available dataset
 - KTH action [Schuldt et al.'04]
 - Weizmann [Blank et al.'05]
- Both captured in a controlled environment with homogeneous background.

Feature combination used

- Five different feature combinations
 - Combination I : (HOG + HOF) linear kernel
 - Combination II : (HOG + HOF) χ^2 kernel
 - Combination III: (HOG + HOF + LBP-TOP) linear kernel
 - Combination IV : (HOG + HOF) + LBP-TOP χ^2 kernel
 - Combination V : (HOG + HOF + LBP-TOP) χ^2 kernel

KTH actions [Schuldt et al.'04]

- Total 599 videos divided in 6 action classes
- 25 people performed in 4 different scenarios
- Frame resolution: 160 x 120 pixels
- Frames per second: 25 (average duration 10-15 sec.)
- Followed author specified setup for training-testing splits.
- Performance measure: *average accuracy over all classes*

KTH original dataset - results

KTH original dataset – results (2)

- Best result for HOG+HOF (94.91%)
- HOG+HOF helps to elevate the overall accuracy by 3–8% ☺
- Kernelization of specific features are able to strengthen results
 - HOF + LBP-TOP : <u>93.06</u>%
 - HOF + LBP-TOP χ^2 kernel : 94.44% \odot
- HOF is more effective than HOG but improves when paired with LBP-TOP ⁽²⁾

KTH downsampled videos - results

Spatial downsampling (k=2000)

Temporal downsampling (k=2000)

IEEE ICSIPA '15

KTH downsampled videos – results (2)

- STIPs and kernalized LBP-TOP appear to dominate the best results within each mode ⁽²⁾
- LBP-TOP contributes more with the deterioration of spatial or temporal quality (more significant in case of SD₄ & TD₄) ☺
 - Shape information are more important for low temporal resolution 🐵
 - Motion information are more important for low spatial resolution 🛞
- Note: for STIPs detection in SD modes different k parameters are used

Weizmann [Blank et al'05]

- Total 93 videos divided in 10 action classes
- 9 people performed different actions
- Frame resolution: 180 x 144 pixels
- Frames per second: 50 (average duration 2-3 sec.)
- Performance measure: leave-one-out-cross-validation

Weizmann video sample

Weizmann original dataset - results

- Best result 94.44% for HOF.
- HOF+LBP-TOP dominate best result within each mode ⁽²⁾
- Kernelization of LBP-TOP features are able to strengthen results ⁽²⁾
- Kernelization is less effective for HOF features ⁽³⁾
- Shape is largely poor on all combinations ⁽³⁾ but performs better after combining with LBP-TOP ⁽³⁾

Weizmann downsampled videos – results

IEEE ICSIPA '15

Weizmann downsampled videos – results (2)

- STIPs and kernalized LBP-TOP appear to dominate the best results within each mode ⁽²⁾
- LBP-TOP contributes significantly more as the resolution quality decreases ⁽²⁾
- Kernelized LBP-TOP achieves **best accuracy** rate at $\alpha = 4$ and $\beta = 3$ \bigcirc

Effects of kernelization

Recognition accuracy with and without χ^2 -kernel, on the original KTH videos.

Conclusion

- This work utilizes a new notion of joint feature utilization for action recognition in low quality videos
- This woks shows how downsampled videos can particularly get benefitted from textural information with shape and motion.
- The combined usage of all three features (HOG+HOF+LBP-TOP) outperforms the other competing methods across a majority of cases.
- Our best method is able to limit the drop in accuracy to around 8-10% when the video resolutions and frame rates deteriorate to a fourth of their original values.

Future Works

- Extend our evaluation to videos from more complex and uncontrolled environments [Laptev et al.'04], [Oh et al.'11]
- Investigate the simultaneous effects of both spatial and temporal downsampling on videos
- Explore other spatio-temporal textural features that might exhibit more robustness towards video quality

Thank You