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Introduction

e Proposed a hybrid solution for activity recognition in low
quality videos

- Leverage both handcrafted and deep-learned features

e Achieved competitive results for low quality subsets of two

publicly available datasets

- Low quality version of UCF-11 [Liu et al. 2009]
- Low quality subsets from HMDB51 [Kuehne et al. 2011]



Low Video

Problem Statements Quality

e Handcrafted features estimation is ...

Original Frame
- Lack robust image structure encoding

- Highly dependent on image resolution

- Mostly rely on local features

- May miss important image region

e |Leverage scene and objects & ﬁ

- Use context of the action-of-interest HOG Orgi. Res.

CRF 50 CRF 40




Related Works

e Handcrafted Features

- Detectors: STIP [Laptev et al. 2003], Cuboid [Dollar et al. 2009], IDT [Wang et al. 2015] etcC.

- Descriptors: HOG/HOF [Laptev et al. 2003], MBH [wang et al. 2011] etc.

e Deeply-learned features
- CNN based: 3D-CNN [karpathy et al. 2014],

Two-stream CNN [Simonyan and Zisserman. 2014] etcC.



Proposed Framework

Shape and Motion Features
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\_ VGG-VeryDeep-16 CNN Model J

- Shape-motion Channel: Harris3D + HOG/HOF
- Object Channel: VGG-16 trained on ImageNet + FCs/SoftMax

- Classification: multi-class SVM + chi*2 homogeneous kernel

+ Muti-class SVM +

Action Label
Prediction

Biking



Shape-motion features

e STIP driven shape + motion features

- STIP detection: Harris3D [Laptev and Linderberg. 2003]
- Shape feature: Histogram of Oriented Gradients (HOG) [Laptev et al. 2008]

- Motion feature: Histogram of Optical Flow (HOF) [Laptev et al. 2008]
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Deep Object Features
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VGG-16 CNN model

VGG16 very deep CNN model [simonyan and Zisserman. 2014] trained on 1000 categories of ImageNet
Not sufficient to describe frame-object level features with higher degree of discriminativeness
Last Conv. layers offers more rich features (comparable with mid-level like features)

Deep Object Features: FC6, FC7 and SoftMax



Datasets

e Two publicly available datasets
- UCF-11 dataset

- 11 action classes, 1600 videos, Video resolution: 320x240
- Compressed with uniform CRF distribution: CRF 23-50

- HMDB51 dataset

- 51 action classes, 6766 videos

- Quality-based test-train split: Good, Medium and Bad, Use Bad and Medium for test

i B e

Sample Iow quality videos

Class-specific CRF values for UCF-11: http://saimunur.github.io/YouTube-LQ-CRFs.txt



Experimental Result (Individual channel)

Table 2. Experimental Results of Shape and Motion
Features on Various Low Quality Datasets

HMDB
METHOD Dim. UCF-LQ BQ MQ
HOG 36864  63.57 8.15 10.40
HOF 46080  59.10 11.41 10.65
HOG+HOF 82944  70.27 26.02 30.53

Table 1. Experimental Results of Various Object Features
on the Low Quality Datasets

METHOD Dim. [L]SF - EEDB IO
Softmax 1000 7742 2331 3046
FC6 4096 83.54 2331 30.50
FC7 4096 8133 2841 38.02
FC6+FC7 8192 83.13 3199 39.63
FC6+FC7+softmax 9192 83.08 3198 3970 .




Experimental Result (channel combined)

Table 3. Experimental Results of Combination of Shape,
Motion and Object Features on Low Quality Datasets

HMDB
; UCF-

METHOD Dim, LQ BQ MQ
HOG+FC6+FC7 45056 84.03 33.02 40.05
HOF+FC6+F(C7 54272 85.16 3280 4041
HOG+HOF+FC6+FC7 91136 86.34 3374 40.55
HOG+HOF+LBP- 85248 7099 2388 30.71
TOPY

HOG+HOF+LPQ- 86016 71.65 2502 30.75
TOP?

STEM (w/o saliency)** 87040 75.04 33.78 38.76
STEM?* 87040 7750 34.08 3894
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Computational Complexity

Table 4. Computational Cost of Feature Extraction by
shape-motion descriptors (feature detection+description)
and VGG-VeryDeep-16" object model

Harris3D+ VGG
METHOD HOG+HOF model

(shape-motion)  (object)
Time per frame (sec.) 0.156 0.303

e Test Scenario

- Avideo from bike_riding class of HMDB51
- 240x320 pixels and 246 video image frames at 30 fps

- Intel Core i7 PC with 24GB memory
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Conclusion and future work

e Proposed to use image-trained deep CNN model to obtain
object features for video based activity recognition.

e Deep CNN features are proven to complement traditional
shape-motion features, also HAR in LQ videos.

e (Can be further improved by fine-tuning CNN model by
action images.
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Thank You

Any Questions?



