

Motivations

- Very few works deal with the problem of action recognition in low quality videos
- Popular local space-time features (shape, motion) are ineffective when video quality deteriorates

 Textural features can complement well but produce indiscriminate features due to unrelated background motion and pixel-based artifacts

Scope

Low Quality: Focus is on videos that are poor in the aspect of resolution (spatial sampling), frame rates (temporal sampling), and compressed videos affected by motion blurring and compression artifacts.

Contributions

- A new spatio-temporal mid-level (STEM) feature bank for recognizing actions in low quality videos is introduced
- Features are detected at local and global streams to exploit the benefits of local shape-motion and global statistical patterns
- Salient textural histograms are extracted discriminately based on 3D salient patches

Datasets

Low quality samples from **KTH** and **HMDB51**

Spatio-Temporal Mid-Level Feature Bank for Action Recognition in Low Quality Video

Centre for Visual Computing, Faculty of Computing and Informatics, Multimedia University, Malaysia

Proposed STEM Encoding Framework

Results on Low Quality Versions/Subsets

	KTH (downsampled)						HMDB	
Method	SD_2	SD_3	SD_4	TD_2	TD_3	TD_4	BQ	MQ
HOG+HOF (BoW encoding) [3]	88.24	81.11	73.89	87.04	82.87	82.41	17.40	22.77
HOG+HOF	89.63	82.31	78.98	89.35	86.11	83.89	26.02	30.53
HOG+HOF+LBP-TOP	89.81	81.48	78.70	89.35	86.11	84.72	28.49	35.24
STEM (w/o salient textures)	89.35	82.87	79.72	89.63	87.41	84.63	33.78	38.76
STEM	88.52	83.98	83.15	90.00	88.06	85.09	34.08	38.94

Video Downsampling

Encoded by Fisher Vector (FV)

Saimunur Rahman, John See

Global Stream

ST Textural Features

 Binarized statistical image features (BSIF) [2] Filter response

$$r_i = \sum_{u,v} F_i(u,v) X(u,v) = \mathbf{f}_i^T \mathbf{x}$$

is thresholded at level zero to obtain binarized feature b_i

• *n* number of filters produce *n*-bit binary code TOP extended (XY XT VT nlag

$$DP \text{ extended (XY, XI, YI planes)} \\ h^{plane} = \sum \mathcal{T}[h(m) = \mathcal{T}[h(m)]]$$

Salient Histograms

Graph-based visual saliency (GBVS) [1]

- 3 features maps: Contrast, orientation, flicker.
- Saliency map $S_{i,i}$ is converted to binary saliency mask $Z_{i,i}$ by Otsu's method.
- Applying saliency to the *j*-th bin of BSIF histogram yields $\bar{h}_{j}^{plane} = \sum \mathcal{I}\{\{b_{i}(p) = j\} \cap \{Z(p) = 1\}\}$

Minis supported, work part, Education, Malaysia FRGS under project istry FRGS/2/2013/ICT07/MMU/03/4

Analysis & Discussion

KTH: STEM outperforms other methods in all versions (except SD_2)

 STEM is most robust under low spatial resolutions STEM is increasingly stronger when quality drops – observe SD_4 and TD_4

• **HMDB51**: Accuracy \uparrow by $\sim 8\%$ for BQ and MQ subsets

• Multi-scale salient features: Filter sizes dictate "scale" of information – using 3 scales {3, 9, 15} can increase performance by another

Confusion matrices of KTH- SD_3 for STIP (left) & STEM (right)

Confusion matrices of HMDB for STIP (left) & STEM (right)

References

[1] Harel, J., Koch, C., and Perona, P. (2006). Graph-based visual saliency. In *NIPS*, pages 545–552.

[2] Kannala, J. and Rahtu, E. (2012). Bsif: Binarized statistical image features. In *ICPR*, pages 1363–1366.

[3] Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T. (2011). HMDB: A large video database for human motion recognition. In ICCV, pages 2556–2563.

Acknowledgements

Contact Information

URL: http://pesona.mmu.edu.my/~johnsee **Email**: johnsee@mmu.edu.my