

Motivations

- Lack of action recognition works that deal with the problem of low quality videos
- Popular space-time feature descriptors do not generalise well when details are less accurate

Scope

Low Quality: Focus is on videos that are poor in the aspect of resolution (spatial sampling), frame rates (temporal sampling), and compressed videos affected by motion blurring and compression artifacts.

Contributions

- Investigate the performance of popular representations for action recognition when video quality is poor
- Propose the use of spatio-temporal texture features to complement shape and motion
- Report extensive evaluation on two benchmark action datasets – KTH and HMDB51

Datasets

KTH (small-scale, simple backgrounds, downsampled)

HMDB51 (large-scale, complex backgrounds, motion blur, compression artifacts)

On the Effects of Low Quality Video in Human Action Recognition

John See, Saimunur Rahman

Centre of Visual Computing, Faculty of Computing and Informatics, Multimedia University, Malaysia

Proposed Framework

Downsampled KTH Results

Method	Recognition accuracy (%) BOW (V=4000)						FV (K=256)					
	SD_2	SD_3	SD_4	TD_2	TD_3	TD_4	SD_2	SD_3	SD_4	TD_2	TD_3	TD_4
HOG	76.85	66.20	55.56	80.09	76.85	75.46	75.00	69.44	55.09	86.57	81.94	84.26
HOG+LBP-TOP	80.56	73.61	76.39	80.56	75.46	74.54	79.63	76.85	75.93	85.19	83.80	79.17
HOF	88.89	82.41	76.39	83.80	75.46	72.22	87.50	82.87	76.38	85.19	81.94	76.85
HOF+LBP-TOP	89.35	85.65	84.26	83.80	80.56	78.70	88.43	82.87	81.94	86.11	83.80	78.70
HOGHOF	83.33	76.39	65.74	86.11	81.94	76.85	86.11	80.09	64.35	88.43	84.26	82.87
HOGHOF+LBP-TOP	86.11	77.31	77.31	89.35	85.65	81.94	87.04	82.41	78.70	90.28	85.19	84.72

Video Downsampling

Spatial Downsampling (SD_2, SD_3, SD_4) (a) (b) (c) (d)	K • S 2 • T 1 i H 1 • F d 4 • F d 4 • F C 6
Methods	2
	• E
Spatio-temporal Interest Points: Harris 3D	E
Local Shape & Motion Descriptors: HOG, HOF	C
Local Textural Descriptor: LBP-TOP	
 Codebook Generation: 1) Bag-of-Words (BoW), 2) Fisher Vector (FV) 	C f
- Classification: Multi-class SVM with χ^2 -kernel	

Analysis & Discussions

TH

Spatial resolution \downarrow : HOF+LBP-TOP limits $SD_2 \rightarrow SD_4$ to only $\sim 5\%$ drop

Temporal frame rate \downarrow : HOGHOF+LBP-TOP imits $TD_2 \rightarrow TD_4$ to only $\sim 6\%$ drop

MDB51

HMDB Overall: Out of 51 classes, 20 improved, 9 drop, rest unchanged.

HMDB-MQ: > 60% improvement over baseline HMDB-BQ: > 70% improvement over baseline

odebook generation

Random Sampling Size for training codebook: 200k descriptors (best empirically)

Encoding methods: FV has no advantage over BoW when spatial resolution \downarrow , FV > BoW for complex scenes (HMDB51)

BP-TOP has negligible effect on the complexity of codebook, i.e. $\ell{LBPTOP} \ll \ell_{STIP}$ which is V for BoW, or 2DK for FV

HMDB Low Quality Subset Results

[1] Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T. (2011). HMDB: A large video database for human motion recognition. In *ICCV*, pages 2556–2563. [2] Zhao, G. and Pietikainen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. PAMI, 29(6):915-928.

Min-This work is supported, part, IN of Education, Malaysia under FRGS project istry FRGS/2/2013/ICT07/MMU/03/4

Recognition accuracy (%)							
had	HMD	B-BQ	HMDB-MQ				
nou	BoW	FV	BoW	FV			
G+HOF	16.44	21.57	22.87	30.79			
GHOF+LBP-TOP	23.48	28.66	28.32	33.94			
G+HOF+LBP-TOP	26.04	28.49	30.99	35.24			
GHOF (Baseline) [1]	17.18	-	18.68	-			
Baseline) [1]	17.54	_	23.10	-			
-TOP [2]	17.00		24.11				

Percentage (%) of increment after textural features are considered

Confusion matrices for HOG+HOF (left) & HOG+HOF+LBP-TOP (right)

References

Acknowledgements

Contact Information

URL: http://pesona.mmu.edu.my/~johnsee Email: johnsee@mmu.edu.my