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Abstract—Human activity recognition is one of the most inten-
sively studied areas of computer vision and pattern recognition in
recent years. A wide variety of approaches have shown to work
well against challenging image variations such as appearance,
pose and illumination. However, the problem of low video
quality remains an unexplored and challenging issue in real-
world applications. In this paper, we investigate the effects of low
video quality in human action recognition from two perspectives:
videos that are poorly sampled spatially (low resolution) and
temporally (low frame rate), and compressed videos affected by
motion blurring and artifacts. In order to increase the robustness
of feature representation under these conditions, we propose the
usage of textural features to complement the popular shape
and motion features. Extensive experiments were carried out
on two well-known benchmark datasets of contrasting nature:
the classic KTH dataset and the large-scale HMDB51 dataset.
Results obtained with two popular representation schemes (Bag-
of-Words, Fisher Vectors) further validate the effectiveness of the
proposed approach.

I. INTRODUCTION

Human action recognition in video is an active area of

research, with many real-world applications ranging from

automated video surveillance, video mining and retrieval,

and interactive video games. In unconstrained videos, human

actions are captured with typical image variations such as ap-

pearance, scale and view pose, to more challenging problems

such as illumination change, occlusion, shadow, and camera

motion. One relatively unexplored problem is pertaining the

quality of videos. As most research in action recognition rely

on the assumption that video data is of high-definition (HD)

quality with minimal signal noise, many proposed approaches

have found to worked well under such pristine conditions.

However, most of these videos are not feasible for real-time

video processing, data streaming and mobile applications, due

to the computational overhead that most methods incur.

Popular approaches for generic image classification have

been extended for use in video sequences, to a good measure

of success. In particular, bag-of-words (or bag-of-features)

based methods have demonstrated promising results for the

task of action recognition [1]–[3]. Even with these successes,

the representation of local regions in videos is still an open

problem in research. As such, a variety of spatio-temporal

features have also been considered in literature to better

represent video data. Many popular works [1], [4], [5] prefer

utilizing gradient and flow information to describe the shape

and motion that lies in the video. The use of textures, however,

is less common [6], [7], though there are many benefits that

can be leveraged.

Oh et al. [8], in establishing the recent large-scale VIRAT

dataset for continuous surveillance, provided nine downsam-

pled versions of the data in the initial version1), consisting

of three spatial scales and three temporal frame rates. The

authors stressed that this is a ”relatively unexplored area” and

that ”it is important to understand how existing approaches

will behave differently”. Hence, this motivates this work to

investigate the capability of recognizing actions under these

challenging conditions.

Inspired by the known merits of various features and the

obvious lack of action recognition work in low quality videos,

we intend to investigate and present a feasible approach to

this problem. In this paper, we propose the usage of spatio-

temporal textural features as a complement to shape and mo-

tion features in order to increase the robustness of recognizing

human actions under such conditions. We approach this work

by examining two forms of low quality video: videos that are

poorly sampled spatially (low resolution) and temporally (low

frame rate), and compressed videos that are affected by motion

blurring and compression artifacts. We evaluate the proposed

approach with a set of extensive experiments on two well-

known benchmark action datasets of contrasting nature: the

KTH dataset, which contains simple actions under controlled

environment; and the large-scale HMDB51 dataset, which

consists of video clips captured from movies and YouTube

under complex, unconstrained environments. Finally, we also

provide an analysis into the aspects of descriptor sampling

size, encoding methods, and computational cost.

The rest of the paper is organized as follows: Section

II briefly reviews some related work in literature; Section

III defines how video downsampling is carried out in our

work; Section IV describes the steps involved in the overall

framework; Section V presents the datasets used, experimental

results and further analysis on various aspects; Finally, Section

VI concludes the paper and suggests some future directions.

1As of today, these downsampled versions are no longer available in the
current VIRAT version 2.0. Website: http://www.viratdata.org/



II. RELATED WORK

In the last decade, human action recognition has been

studied extensively by the computer vision and pattern recog-

nition community [9], [10]. From the the recent research in

activity recognition, spatio-temporal video features can be

categorized into three main categories based on the type of

feature used: dynamic feature (motion), structure (shape) and

textural (texture), or any implicit/explicit combination of these

three types. Most recent works employ primarily motion and

shape features [3]. Laptev [11] first proposed the extraction

of shape (HOG) and motion (HOF) information from spatio-

temporal interest points (STIP) to classify human actions in

video. More recently, Wang et al. [5] proposed the use of

dense trajectories with the same way of encoding the shape and

motion information. All these methods appear to suggest that

the combination of shape and motion features performs better

than using them individually. Some recent works focused on

other aspects of action recognition besides feature extraction,

such as the use of human body parts [12], [13], encoding

techniques [14], [15] and deep learning methods [16], [17].

Texture-based (or textural) features have also found their

way to action recognition research, particularly the spatio-

temporal descriptor LBP-TOP [18], a spatio-temporal exten-

sion to the well-known Local Binary Pattern (LBP) descriptor

first proposed by Ojala et al. [19]. Kellokumpu et al. [6] first

proposed the use of the LBP-TOP descriptor to recognize

human actions by applying it on the entire bounding volume

area. A histogram of local textural features is then built from

the spatio-temporal data from the entire action sequence. Their

experiments on the Weizmann dataset showed tremendous

promise in comparison with popular approaches back then.

Mattivi and Shao [7] applied LBP-TOP over small video

patches called cuboids which are extracted from each interest

point detected from the sequence. This produces a sparser

representation of video sequences unlike approaches that uti-

lize the whole video volume. The LBP-TOP cuboids are then

passed through a typical bag-of-words classification scheme.

Their approach, after a few additional improvements, managed

a promising accuracy rate of around 91% on the KTH dataset.

A subsequent work by the same authors [20] further verified

the strength of LBP-TOP features. The main disadvantage of

this approach is that the textural features are too dependent on

the extraction of spatio-temporal interest points (in this case,

the cuboids). It remains to be seen how cuboids would fare in

circumstances of video quality.

Yeffet and Wolf [21] proposed a self-similarity approach

within an efficient representation, which is motivated by LBP.

Their concept simply compare a small patch of pixels with

shifted patches in the previous and in the next frame. Hence,

the encoded information, named Local Trinary Pattern (LTP),

describes the relative similarity of the said two patches to the

patch in the central frame. Histograms are accumulated every

few frames and the vector of all concatenated histograms is

taken as the video descriptor. Their extensive experiments on

both simple and complex action datasets showed excellent re-

sults, though the authors acknowledged the lack of appearance

information in the absence of motion.

III. VIDEO DOWNSAMPLING

A video’s spatial resolution and temporal sampling rate

defines the amount of spatial and temporal information it can

convey. Spatial resolution is simply the video’s horizontal pixel

count by its vertical pixel count, i.e. frame size. The temporal

sampling rate defines the number of discrete frames in a unit of

time, i.e. frames per second (fps) or Hertz (Hz). Based on our

recent work [22], we first describe how spatial and temporal

downsampling is employed to create several downsampled

versions of the original video data

A. Spatial Downsampling

Spatial downsampling produces an output video with a

smaller resolution than the original video. In the process,

no additional data compression is applied while the frame

rates remained the same. For clarity, we define a spatial

downsampling factor, α which indicates the factor in which

the original spatial resolution is reduced. In this work, we

fixed α = {2, 3, 4} for modes SDα, denoting that the original

videos are to be downsampled to half, a third and a fourth

of its original resolution respectively. Fig. 1 shows a sample

video frame that undergoes SD2, SD3 and SD4. We opted

not to go beyond α = 4 as extracted features are too few and

sparse to provide any meaningful representation.

Fig. 1. Spatially downsampled videos. (a) Original (SD1); (b) SD2; (c)
SD3; (d) SD4;

B. Temporal Downsampling

Temporal downsampling produces an output video with

smaller temporal sampling rate (or frame rate) than the original

video. In the process, the video frame resolution remained

the same. Likewise, we also define a temporal downsampling

factor, β which indicates the factor in which the original frame

rate is reduced. Fig. 2 illustrates how the frames are selected

in the downsampling process; black strips indicate the kept

frames while orange strips indicate the discarded frames. In

our work, we use values of β = {2, 3, 4} for modes TDβ ,

denoting that the original videos are to be downsampled to

half, a third and a fourth of its original frame rate respectively.

IV. OVERALL FRAMEWORK

Figure 3 shows the overall framework of the proposed

approach for action recognition. We now describe the steps

involved in the framework in detail.
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Fig. 3. Overall framework of the proposed action recognition scheme

Fig. 2. Temporal downsampling; (a) Original video (b) TD2; (c) TD3;

A. Spatio-temporal Interest Points

For each given sample point (x, y, t, σ, τ), a feature descrip-

tor is computed for a 3-D video patch centered at (x, y, t) at

spatial scale σ and temporal scale τ ; hence these points can

be defined in five dimensions (x, y, t, σ, τ).
In this work, we employ the Harris3D detector (a space-

time extension of the popular Harris detector [23]) to obtain

spatio-temporal interest points (STIP) [11]. Briefly, a spatio-

temporal second-moment matrix is computed at each video

point µ(.;σ; τ) = g(.; sσ; sτ) ∗ (∇L(.;σ; τ)L(.;σ; τ))T using

a separable Gaussian smoothing function g, and space time

gradients ∇L. The final location of the detected STIPs are

given by local maxima of H = det(µ)− k trace3(µ), H > 0.

We use the implementation from [1] with standard parameter

settings [3], i.e. k = 0.00005, σ2 = {4, 8, 16, 32, 64, 128} and

τ2 = {2, 4}, for both original and downsampled videos. For a

small portion (5%) of video clips that undergo spatial and tem-

poral downsampling to much greater extent (α = 4, β = 3, 4),

increasing the value of k can impose more sensitivity towards

the change in gradients, thus picking up more STIPs. Figure

4 shows some STIPs that were extracted using the Harris3D

detector from two types of actions.

B. Local Descriptors

Following the extraction of STIPs, local descriptors are

computed at these STIP locations to capture spatio-temporal

Fig. 4. Harris3D feature detector on KTH data set

features that characterizes the action in the clip. Next, we will

briefly discuss the shape, motion and texture features used in

our work.

1) Shape and Motion Features: In general, shape features

depict the structural or geometrical information found spatially

in video; motion features carry important temporal information

or changes of its structure across time. These two features can

be taken together to exemplify spatio-temporal information in

video. An extensive experimental work by Wang et al. [3]

highlighted the strengths of shape and motion features when

used together as spatio-temporal features.

To characterize the local shape and motion information

accumulated in space-time neighborhoods of the detected

STIPs, we extract Histogram of Gradient (HOG) and His-

togram of Optical Flow (HOF) descriptors as proposed in

[3], [11]. The HOG/HOF descriptors are computed for the

interest points by defining descriptor volumes of size ∆x(σ) =
∆y(σ) = 18σ,∆t(τ) = 8τ . Each volume is subdivided into a

nx × ny × nt grid of cells; for each cell, 4-bin histograms of

gradient orientations (HOG) and 5-bin histograms of optical

flow (HOF) are computed. In this experiment we opted for grid

parameters nx, ny = 3, nt = 2 for all videos, as suggested in

Wang et al. [3].

2) Texture Features: Textures are defined as statistical

regularities that describe patterns found in both space and

time, which was adopted for action recognition with promising

results [6], [7].

One of the most widely-used texture descriptor, Local

Binary Pattern (LBP) produces a binary code at each pixel

location by thresholding pixels within a circular neighborhood

region by its center pixel [19]. The LBPP,R operator produces



2P different output values, corresponding to the 2P different

binary patterns that can be formed by the P pixels in the

neighborhood set. After computing these LBP patterns for

the whole image, an occurrence histogram is constructed to

provide a statistical description of the distribution of local

textural patterns in the image. This descriptor has been proved

to be successful in face recognition [24]. In order to be

applicable to the temporal domain where textures are viewed

as ”dynamic patterns” that change over time, Zhao et al. [18]

proposed LBP on Three Orthogonal Planes (LBP-TOP), where

LBP is performed on the three orthogonal planes (XY, XT,

YT) in the video volume by concatenating their respective

occurrence histograms into a single histogram. LBP-TOP is

formally expressed by LBP − TOPPXY ,PXT ,PY T ,RX ,RY ,RZ

where the subscripts denote a neighborhood of P points

equally sampled on a circle of radius R on XY, XT and

YT planes respectively. The resulting feature vector length is

(3×2P ). LBP-TOP encodes the appearance and motion along

three directions, incorporating spatial information in XY-LBP

and spatial temporal co-occurrence statistics in XT-LBP and

YT-LBP. In this experiment we apply the parameter settings of

LBP − TOP8,8,8,2,2,2 with non-uniform patterns as specified

by Mattivi and Shao [7], which produces a feature vector

length of 768.

C. Codebook Generation

A video sequence is represented as a bag of local spatio-

temporal features [25]. Spatio-temporal features are first quan-

tized into a number of visual words called a codebook, and

then the video is represented by the frequency histogram of

these visual words.

In this work, we tested with two representation schemes

– Bag-Of-Words (BOW) and Fisher Vectors (FV), each of

which generates its own codebook to encode the feature

descriptors. Codebooks can be constructed from a single, or a

combination of different feature descriptors concatenated at the

descriptor level. Alternatively, separate codebooks can also be

constructed for each feature descriptor before concatenation,

at the expense of more computational load. For both repre-

sentations, we sample a subset of 100,000 randomly selected

descriptors from the training samples to limit the complexity

of our experiments. This is a typical setting found to give a

reasonably good and stable performance across datasets [3].

1) Bag-of-Words (BOW): Codebooks are generated with

standard k-means clustering. For consistency, we empirically

set the number of visual words to V = 4000, which has shown

to give good results in numerous works [3]. Naturally, feature

encoding is performed by vector quantization (VQ), which

is a hard assignment scheme based on the nearest Euclidean

distance. A feature is assigned to cluster c if it’s closer to the

centroid of cluster c than any other centroids. To increase the

clustering precision, we iteratively perform k-means 8 times

(initialized using the preceding round’s final centers) and kept

the result with the lowest error.

2) Fisher Vectors (FV): We construct Fisher Vectors for

each type of descriptor separately. In this representation tech-

nique, a Gaussian Mixture Models (GMM) is first fitted to the

set of descriptors that were randomly selected from the training

samples. Given the GMM fitting θ = (πj , µj ,Σj) where the

parameters πj , µj and Σj indicate the prior probability, mean

and covariance of each j-th distribution, the GMM associates

each descriptor xi to a mode j in the mixture.

Fisher Vectors can be encoded by the mean (µjk) and

standard deviation (σjk) vectors for each mode k,

µjk =
1

N
√
πk

N∑

i=1

pik
xji − µik

σi

(1)

σjk =
1

N
√
2πk

N∑

i=1

pik[(
xji − µik

σi

)2 − 1] (2)

where j ∈ R
D and the posterior probability defined by

pik =
(xi − µk)

TΣ−1

k (xi − µk)∑K

t=1
(xi − µt)TΣ

−1

t (xi − µt)
(3)

constitutes the soft assignment of local descriptor xi to the k-

th Gaussian mixture mode. Unlike hard assignment, this tech-

nique gives a probability measure to each assigned descriptor,

providing also the shape of the distribution.

The Fisher Vectors ηjk are obtained by concatenating the

vectors µjk and σjk for all K modes in the Gaussian mixtures,

yielding a final encoding dimension of 2KD. Finally, the FVs

are then power-normalized by the following function

f(ηj) = sign(ηj)|ηj |α (4)

with α = 0.5 then ℓ2-normalized, following [26]. In our

experiments, we use K = 256 for each descriptor type.

D. Classification

For classification, we use a non-linear support vector ma-

chine (SVM) with a χ2-kernel which was used in [1]:

K(Hi, Hj) = exp(− 1

2A

K∑

n=1

(hin − hjn)
2

hin − hjn

) (5)

where hin and hjn are the frequency histograms of the n-th

word occurrences, K is the vocabulary size, and A is the mean

value of distances between all training samples. This is neatly

approximated by Vedaldi et al. [27] in the form of additive

homogeneous kernels which are more efficient and accurate.

In some parts of our experiments where FV is used, we opted

for a linear kernel instead of χ2 kernel, which is known to

over-fit feature vectors of higher dimensionality. For multi-

class SVM classification, we apply the one-versus-all (OVA)

approach to select the class with the highest score.



V. EXPERIMENTS

In this section, we describe a set of extensive experiments

and their respective results, while analyzing and comparing

different combination of feature descriptors discussed earlier.

Experiments were conducted separately for spatial downsam-

pling and temporal downsampling to demonstrate the strengths

of specific features with respect to each condition. We also

provide a detailed elaboration of the evaluation framework and

settings used for each experimented dataset.

A. Datasets

We conducted our experiments on two notable benchmark

datasets: KTH [25] and HMDB51 [28]; the former being

a classic dataset that is most popular in action recognition

research, the latter being a large-scale dataset with videos

captured ”in the wild”. Both datasets are very contrasting in

terms of the environment in which the videos were captured in,

the extent of camera motion and view changes, and the number

of action classes. The HMDB51 is of great appeal to our work

as it provides specific quality labels for all videos. As such,

we did not consider other contemporary large scale action

datasets (UCF50, UCF101) as they neither specified video

quality labels, nor low quality subsets. An extensive amount

of downsampling work and feature extraction is required to

test with these datasets.

KTH [25] is the most popular dataset in literature for hu-

man action recognition. It contains 6 action classes: walking,

running, jogging, hand-waving, hand-clapping and boxing;

performed by 25 actors in 4 different scenarios: outdoors,

outdoors with scale variation, outdoors with different clothes

and indoors. There are 599 video samples in total (one

subject has less one clip). Each clip is sampled at 25 fps and

lasts between 10–15 seconds with image frame resolution of

160× 120 pixels. We follow the original experimental setup,

i.e., the samples are divided into a test set (9 subjects: 2, 3, 5, 6,

7, 8, 9, 10, and 22) and training set (containing the remaining

16 subjects), while reporting the average accuracy over all

classes as performance measure. For the purpose of this work,

the six downsampled versions of the dataset (denoted by SD2,

SD3, SD4, TD2, TD3, TD4; detailed explanation in Section

III) are used. Figure 5 shows a sample frame from various

spatially and temporaly downsampled video clips from the

KTH dataset.

The HMDB51 [28] dataset is a large scale action video

database with 51 action categories2 totaling 6,766 clips, ex-

tracted from a variety of sources ranging from digitized movies

to YouTube. Video clips depict mainly natural actions from

uncontrolled environments (i.e. ”in the wild”), with a wide

range of camera viewpoints, the presence of camera motion,

a highly variable number of humans involved in the action.

Each category contains at least 101 clips. In addition to the

action labels, each clip is also annotated with meta-labels

describing various properties of the clip including the quality

2Data available at http://serre-lab.clps.brown.edu/resource/
hmdb-a-large-human-motion-database/.

Fig. 5. Sample action classes from KTH: Top row (Spatially downsampled,
shown here after resizing): Boxing, Walking, Jogging; Bottom row (Tempo-
rally downsampled): Handclapping, Running, Handwaving.

Fig. 6. Sample action classes from HMDB51: Top row (full body motion):
Somersault, Fencing, Push-ups; Bottom row (motion from specific body parts
or face): Clap, Chew, Eat. Frames shown here are from ”bad” and ”medium”
labeled clips.

of video. A three level grading of video quality was applied

to the set of clips. A requirement was set to gauge the ease

of observers in identifying single fingers during the motion.

Video samples that do not meet this requirement were rated

”medium” or ”bad” if body parts or limbs vanish while the

action is executed. In addition, the ”bad” videos also contain

significant motion blurring and compression artifacts. Figure 6

shows a sample frame from ”bad” and ”medium” quality video

clips of various action classes from the HMDB51 dataset.

For the purpose of this work, we are mainly interested in

the evaluation of clips annotated with ”medium” and ”bad”

quality labels. However, the ”high” quality clips are also

useful as a control experiment for the sake of comparison.

Hence, we partition the HMDB dataset into three subsets based

on its quality label (distribution in parenthesis): HMDB-BQ

(20.8%) containing ”bad” quality clips, HMDB-MQ (62.1%)

containing ”medium” quality clips, and HMDB51-HQ (17.1%)

comprising of the remaining ”high” quality clips. For con-

sistency of experiments, we follow the settings used in the

original paper [28] whereby three distinct training-test splits

(70/30 clip distribution per class) were used. The training sets

remain the same, with a fair composition of videos from all

three quality levels. The mean accuracy of all three splits are



TABLE I
RECOGNITION ACCURACY (%) OF VARIOUS FEATURE COMBINATIONS WITH BAG-OF-WORDS (BOW) AND FISHER VECTOR (FV) REPRESENTATION ON

VARIOUS DOWNSAMPLED VERSIONS OF THE KTH DATASET.

Method
BOW (V=4000) FV (K=256)

SD2 SD3 SD4 TD2 TD3 TD4 SD2 SD3 SD4 TD2 TD3 TD4

HOG 76.85 66.20 55.56 80.09 76.85 75.46 75.00 69.44 55.09 86.57 81.94 84.26
HOG+LBP-TOP 80.56 73.61 76.39 80.56 75.46 74.54 79.63 76.85 75.93 85.19 83.80 79.17

HOF 88.89 82.41 76.39 83.80 75.46 72.22 87.50 82.87 76.38 85.19 81.94 76.85
HOF+LBP-TOP 89.35 85.65 84.26 83.80 80.56 78.70 88.43 82.87 81.94 86.11 83.80 78.70

HOGHOF 83.33 76.39 65.74 86.11 81.94 76.85 86.11 80.09 64.35 88.43 84.26 82.87
HOGHOF+LBP-TOP 86.11 77.31 77.31 89.35 85.65 81.94 87.04 82.41 78.70 90.28 85.19 84.72

reported as the final measure of performance.

B. Experimental Results

We first present results from two comprehensive experi-

ments – one on the spatially and temporally downsampled

clips (in controlled environment, based on the KTH), and the

second on low quality clips compromised by motion blurring

and compression artifacts (in uncontrolled environment, from

the HMDB). Further to that, we also provide a detailed

analysis into various factors relating to the performance of

our proposed approaches.

1) Experiment I – Downsampled videos: Due to the te-

dious nature of this experiment (which requires creating

six downsampled versions of a single dataset), we ran our

experiments only on the classic KTH dataset. Each type

of descriptor (HOG, HOF and HOGHOF), and its con-

catenation with the spatio-temporal textural feature of LBP-

TOP (HOG+LBP-TOP, HOF+LBP-TOP, HOGHOF+LBP-

TOP) were evaluated across all six downsampled versions

(SD2, SD3, SD4, TD2, TD3, TD4) on two encoding tech-

niques (BOW and FV). HOGHOF denotes concatenation of

HOG and HOF descriptors before codebook generation, as

seen in [3]; HOG+HOF denotes concatenation of the code-

books of both HOG and HOF features.

Results in Table I show some interesting observations. As

the video clip deteriorates spatially, the motion features (HOF)

appear to be most robust and able to sustain a sufficiently

high accuracy with the help of textural features (LBP-TOP).

For instance, there is only a ∼ 5% drop from SD2 to SD4

for BOW when LBP-TOP is used, in contrast to > 12%
drop without LBP-TOP. The relevancy of motion information

makes sense since the shape information (gradient) is largely

dependent on the change of intensities in the spatial domain.

On the other hand, both shape and motion features (HOGHOF)

are necessary to maintain a reasonably good accuracy in

the face of temporal downsampling, even more so when

textural features (LBP-TOP) are considered together as well.

For instance, the drop in accuracy from TD2 to TD4 is

limited to just < 6% for FV encoding when LBP-TOP is

used. Overall, these characteristics are apparent in both BOW

and FV encoding methods. Interestingly, the FV encoding

generally performs better for the temporally downsampled

videos compared to the spatially downsampled videos.

Shape feature (HOG) performed generally poorer than the

TABLE II
RECOGNITION ACCURACY (%) OF DIFFERENT FEATURE COMBINATIONS

WITH BAG-OF-WORDS (BOW) AND FISHER VECTOR (FV)
REPRESENTATION ON HMDB-MQ AND HMDB-BQ SUBSETS.

Method
HMDB-BQ HMDB-MQ

BoW FV BoW FV

HOG+HOF 16.44 21.57 22.87 30.79
HOGHOF+LBP-TOP 23.48 28.66 28.32 33.94
HOG+HOF+LBP-TOP 26.04 28.49 30.99 35.24

HOGHOF (Baseline) [28] 17.18 - 18.68 -
C2 (Baseline) [28] 17.54 - 23.10 -

LBP-TOP 17.00 24.11

other feature combinations. We observed that shape informa-

tion becomes less discriminant as spatial resolution decreases.

However, in the case of decreasing temporal frame rate, it can

sustain a reasonable recognition rate.

2) Experiment II – Low quality videos from HMDB51:

In the second experiment, we evaluated the methods on the

HMDB-BQ (bad quality) and HMDB-MQ (medium quality)

subsets, on both encoding techniques (BOW and FV). The

codebook size for BoW is set to V = 8000 while K = 256 for

FV. Table II shows the performance of the evaluated methods,

in contrast to the baseline performances reported in the dataset

paper [28]. Clearly, the STIP-based descriptors that were

aided by the robustness of the LBP-TOP descriptor seemed

to produce a significant leap of improvement in performance

over their normal counterparts. Figure 8 illustrates this in better

detail, highlighting the breakdown of improvement by the three

subsets (’bad’,’medium’, ’good’). Recognition of actions in the

bad quality videos (HMDB-BQ subset) was vastly better, with

a top improvement of around 70% in the case of HOGHOF

under BoW encoding. It is interesting to mention that the LBP-

TOP descriptor itself performed surprisingly better than the

two baseline methods in the medium quality subset.

Figure 7 compares the confusion matrices of the HOG+HOF

and HOG+HOF+LBP-TOP methods (without and with textural

information, respectively), obtained from the first split, with

BoW encoding. The HOG+HOF+LBP-TOP combination of

descriptors clearly show larger diagonal values in numerous

classes. Altogether, there were 20 classes that had improved

its recognition accuracy while only 9 classes had a drop in

accuracy; the rest remained unchanged. Among those action

classes that had improved (by more than 50%) are such as

”Pull-up”, ”Push-up” and ”Chew”.



Fig. 7. Confusion matrices for HMDB51 using HOG+HOF (left) and HOG+HOF+LBP-TOP (right) with FV representation. Best viewed in colour.
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Fig. 8. Percentage (%) of increment after inclusion of textural features
(LBP-TOP) for various configurations.

3) Analysis on Random Sampling Size: Many works in

literature have analyzed the impact of selecting different code-

book sizes [14], [15], and other factors such as the choice of

normalization and pooling methods [14]. In our work, many of

these parameters were chosen based on practical suggestions

or specific values recommended by these authors. For instance,

due to the complexity of movements in the HMDB51 clips,

we have chosen K = 8000 instead of K = 4000 which

suffice for the simpler KTH clips. Nevertheless, one aspect

remains unexplored, that is the number of feature descriptors

randomly selected to build the codebook. In the previous two

experiments, we set this value to 100,000 for consistency in

experiments. It can be expected that using larger number of

samples will result in a more stable performance, but at the

expense of heavier computational load. Figure 9 shows the per-

formance of the best proposed approach (HOG+HOF+LBP-

TOP) on the three HMDB51 subsets, with respect to the
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Fig. 9. Recognition accuracy (%) of HOG+HOF+LBP-TOP (FV) approach
on the HMDB51 subsets with respect to the number of randomly sampled
descriptors.

number of randomly sampled descriptors. It can be seen that

the ’bad’ quality subset would fare much better using around

200,000 randomly sampled descriptors to build the codebook.

This factor is not as significant in the other two subsets.

4) Analysis on Encoding Methods: The choice of encoding

method as seen in the experimental results of various evalu-

ation works [14], [29] seemed to show a distinct advantage

of Fisher Vector (FV) over other encoding schemes such as

sparse encoding and histogram encoding (used in BoW). It is

interesting to note (from Table I) that the FV encoding does

not hold any advantage over BoW encoding as the spatial

resolution decreases (in fact, it loses in some cases). When

temporal frame rate deteriorates, FV is clearly better than

BoW. In the HMDB51 experiment (see Table II), the FV

outperforms the BoW representation on all accounts.

5) Analysis on Computational Cost: Experiments were

carried out on an Intel Core-i7 3.6 GHz machine with 24GB



RAM. The incorporation of LBP-TOP has a negligible effect

on the time taken for codebook generation, the heaviest task

in the recognition pipeline. With the homogeneous kernel map

[27], feature dimension for LBP-TOP is ℓL = (2P · 3 · 3) or

three times larger (which works out to be 2304 since we use

P = 8 without uniform patterns). This is still much smaller

than the feature dimension of the STIP-based descriptors, i.e.

ℓL ≪ ℓSTIP which is V for BoW, or 2DK for FV.

However, LBP-TOP has a computational complexity of

O(XY T · 2P ), with X , Y denoting the frame resolution, and

T is the number of frames; this expensive feature extraction

process remains the most inherent drawback when the addition

of LBP-TOP is considered. It is worth mentioning that the

LBP-TOP feature extraction time also decreases exponentially

with respect to the spatial downsampling factor (with X and

Y only a fraction of the original).

VI. CONCLUSION

In this paper, we investigate the effects of low video quality

in human action recognition. To the best of our knowledge,

there are no existing systematic attempts to investigate the

problem of video quality, which is highly relevant in many

real-world applications. By our scope, we considered videos

that are poorly sampled spatially and temporally, as well as

videos adversely affected by motion blurring and compres-

sion artifacts. To alleviate the degradation of information in

video data, we propose to complement the conventional shape

and motion features with spatio-temporal textural features

which describes the statistical distribution of patterns. This

preliminary work draws some interesting observations as to

how low quality videos can particularly benefit from textural

information, considering that most new approaches tend to

involve only shape and motion information as their choice of

space-time features. In fact, analysis on the HMDB51 dataset

showed that the ”bad” quality clips responded strongest across

all tested settings with the inclusion of textural features.

In future, we intend to explore other textural features that are

potentially more robust towards deterioration of video quality

while also less computational expensive. Textural features that

are denser [30] or richer in description [21] are also potential

directions following this work.
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