School of Mathematics & Applied Statistics

MATH151: Mathematics 1A Assignment Week <u>13</u> Autumn 2009

	Tuuuiii	11 2000
Student Na	me:	Student Number:
	FULL WORKING is to be Untidy or badly set out w Not all the questions on the a You will receive a mark out This assignment is to be handed in	ork will not be marked. assignment will be marked. of ten for this assignment.
	tions on this sheet by posting to the web	extra questions to use for revision purposes. You care-forum and/or by attending one of the revision class
	School of Mathematics & Applied Statis Assignment Autumn 2009 Sub	: Week <u>13</u>
Student Name:		Student Number:
		Tutor Initials:

1. Consider

$$p(t) = \frac{L}{1 + Ce^{-kt}}, \qquad k = 0.03.$$

- (a) If p(0) = 5 and p(100) = 45 find the values for C and L.
- (b) Using your answer to the previous part of this question predict the value p(150).
- 2. The formula for radioactive decay is

$$R\left(t\right) = r_0 e^{-kt}$$

where k is the radioactive decay constant and r_0 is the initial mass.

(a) Show that the half-life $(t_{1/2})$ is given by

$$kt_{1/2} = \ln 2$$
.

- (b) Find the value for k if the half-life of Loftusium is 90 days.
- (c) How long will it take for 50g of Loftusium to decay tp 10g?
- 3. Re-arrange the formula

$$S = 10 \log (10^{12} \times I)$$

to make I the subject.

4. Rearrange the formula

$$7.9K = 2P - 13.9$$

to make it in the form K = mP + c.

- (a) what is the gradient m.
- (b) Find the intercepts.
- (c) Sketch the graph.
- $5.\,$ A certain bacteria initially weighs $0.5\mathrm{g}$ and it triples every 7 hours.
 - (a) What is the formula w(t) for the weight after t hours.
 - (b) What will it's weight be after 3 days?
 - (c) When will it weight 10g?
- 6. Find $\frac{dy}{dx}$ for the following functions.
 - (a) $y = 9 + 2x^2 + 7x^3$
 - (b) $y = x^2 \cos x$
 - (c) $y = \frac{x^2 + 2}{e^x 1}$
- 7. Evaluate the following integrals.
 - (a) $\int (3x x^2) dx.$
 - (b) $\int_0^{\frac{\pi}{2}} (4e^{3x} \sin(x)) dx$.
 - (c) $\int x^2 (x^3 2)^4 dx$.

Hint. First let $x^3 - 2 = 2$.