2.10 IMPLICIT
DIFFERENTIATION

2.10.1 The Chain Rule Revisited

Recall definition.

If g is differentiable at = and f is
differentiable at g(x), then

[flg(@)) = f'(9(2)) - ¢ (2).

If we introduce another variable, say u,
we can write the chain rule in another

form.
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Now, if y = f(u),

if u = g(z),

It we use these substitutions then the

derivative of y = f(g(z)), where

u=g(z), is
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2.10.2 Alternative Definition of
the Chain Rule.

If g is differentiable at = and f is
differentiable at g(z) and also if
y=f(g(x)) and u = g (x) then
y = [ (u) and

%_dy du
dez du dz’

This formula is easy to remember if we
note that the LHS is exactly what we

get if we 'cancel’ the du’s on the right.
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2.10.2.1 Exercises on the chain rule

1. Differentiate:

a. y= 3z +5)* b w=1\4+3Vt

c. y =cos(cosf) d.y=+/rtan*(/7)
dy

2. In each of the following find e by first
x

making an appropriate choice for w.

—2
a. Yy = (333—1—2:13)37 b. y = (x?’— —)

1
—) d. y = cos®(sin 2z)
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la. Differentiate y = (3z + 5)*.




du

Let, wu = 3x+ 5. — =3
dx

Then, y= u*

dy

7 — 43

du ¢

dy dy du

dz du dzx

= 4y° - 3

— 12 (3z + 5)°
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1b. Differentiate w = \/4 1+ 3/t




qU _ 24-1/2
dt 2
Then, w = u1/2,
dw 1 4,
du 2u
d_w B dw du
dt du dt
_ lu—1/2 : §t—1/2
2 2
3 ~1/2
= =12 (4 - 3\/¥>
3

:4\/E-\/4+3\/¥



164

lc. Differentiate w = cos (cos )




Let, wu = cos®.

j—Z:—sinﬁ
Then, w = cosu,
dw _
a:—smu
dw dw du
dg ~ du df

= — (sinu) - (—sin )

= sin (cos ) - sin 6
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1d. Differentiate y = v/z tan®(1/7).




Let, u = (z)"/?.
d’U; o 1 _1/2
dz 2 (=)
Yy = u tan® U,
d
£ — tan> u —+ u@ tans u
— tan® u + 3u tan® u sec? w(*)
dy dy du
dz du dz
1
= (tan® u + 3utan® usec® u) - 5 (z) "1/

(*) T missed out some calculations here.
You should be able to do this!

~dy  tan® (vz) + 3y/x tan? () - sec? (V)

“dx 2./x
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d
2a. Find d—y by first making an
x

appropriate choice for u.

Yy = (:1:3 + 2x)37




Let, wuw=z+2x

du

— =322 42

T T+
Then, y=u’’

dy 36

— =37

du “

% dy du

dz du dz

= 37u°° - (3:1:2 + 2)
— 37 (322 +2) (2 + 22)™
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d
2b. Find d—y by first making an
x

appropriate choice for u.

7\ 2
__ 3 _ _
= ()




Then,

U=z’ — —
d_u =322 + 722
dx
= (u) "
dy -3
g _9
T (u)
dy dy du
de du dx
= —2(u)"" - (32* + 7z7?)
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d
2¢. find d—y by first making an
T

appropriate choice for u.




Let,

Then,

U=2x
du
9473
dx v

y = sinu
% = COS U
du
dy dy du
dr du dx
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d
2d. Find d—y by first making an
T

appropriate choice for wu.

y = cos®(sin 2x).




du

Let, wu =sin2z — = 2cos2x
dx
Then, vy = cos’u
dy : .
We need to find R We can’t do this directly
U
so we make a second substitution
dw ,
Let, w = cosu — = —sinu
du
dy
3 2
= W - — 3w
Y dw
dy dy dw
du dw du

— 3w? . —sinu

= —3 (sinu) (cos” u)
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dy dy du
dz du dz

= —3 (sinu) (cos® u) - 2 cos 2z

= —6 (sin [sin 2z]) (cos? [sin 2z]) - cos 2z



You are expected to work through

section 2.11.2 before the lecture.
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2.10.3 Implicit Differentiation

So far our equations have generally been

expressed in explicit form. For example,

Yy = 3T — D,

s = —16t* 4+ 20t and u = 2w — w* where
y is explicitly in terms of z,

s is explicitly in terms of ¢ and

u 1s explicitly in terms of w.

What happens if we are unable to write

y in terms of z, for example

2 — 20 4+ dy = 2
d

How do we find d—y in this example?
x




To find % we use
dx

implicit differentiation, in which we

assume that y is a differentiable

function of z.

d
To find d—y we differentiate each term
x

with respect to . When we

differentiate a term involving x alone,
we can differentiate as usual. But when

we differentiate a term involving y we

must apply the Chain Rule.

In general,

< Jo(w)
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Example Differentiate the following

with respect to x:
1. 322 2. 2y

3. 2+ 3y 4. zy?
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1. Differentiate with respect to . 32

2. Differentiate with respect to z. 2y°
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3. Differentiate with respect to x.
x + 3y

4. Differentiate with respect to z. xy?




(z +3y) =

d +d3

_a’/’ —_—

dx dxy
d

1+ — (3vy) -
+dy(y)

14+ 3=
+dx

dy
dx



4y = L. d

dx(xy)_dx(y) CIZ—I—dx(x) Y
_d ey dy
_dy(y) dz Ty

dz
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Given an equation involving x and y

we can find % as follows.

dz
1. Differentiate all terms of the

equations with respect to .

d
. Collect all terms involving d_y on
x

the left hand side of the equation
and move all other terms to the

right side.
dy

. Take T out as a factor on the left
T

hand side of the equation.

dy

. Solve for by dividing both sides

dz

of the equation by the left hand
d

factor that multiplies ey

dz
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Examples

dy
1. ind —=
1 dz

(3—2x)
2y—6
dy

. =g - 2 2 _ —2z—y
. Find T given =< + xy + 3y* = 4. ( i )

given 22 + y? — 3z — 6y = —5.

dy

2

. Find == given 5y? + siny? = 2.
dz

<y[5+2a;os y?] )

12
. Use implicit differentiation to find 12 g if
T

4x? — 29? = 0.

. Show, using implicit differentiation, that
z(z? + 3y?) = c is the solution to the

differential equation
dy

T + y? —|—2wyd— = 0.
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d
1. Find ——= given
dx

x2+y2—




d d d d d

G2, 4 o G, 4. &
TG T @ T mY T g Y
d dy d dy
20+ — (y°) - == —3—-6—(y) - == =0
x+dy (y) dz dy(y) dx
dy dy

20 —3+2y- — —6—=0
v ey dz dz
dy
20—6) — =3 —2
(2y —6) x
%_3—23:

de  2y—6
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d
2. Find T given z? + zy + 3y* = 4.
x




d d d d
d ., d d _ 4y
Tt @+ () =4

d d d dy
9 il il
x—i_xdx( y)+y dx( )—l_dy (Sy) dr =0
d d
2x+xd—y+y+6ydy 0
d
(x+6y)£:—(y+2x)

dy  —(y+22)
de x4+ 6y
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dy
dz

given Hy? + sin y? = z°.

3. Find




2 .
e (5y ) + P (Sm y2) =1 (a:2)
d dy d ,. dy
L (5,2 2\ 4Y _
dy(y) dx+dy(smy) dx v
We need to calculate T (sin y2). Consider
Y
2 = sin y*
d
Let, w = y* e 2y
dy
: dz
z = sinw —— = COSW
dw
% dz dw
dy dw dy

= (cosw) - (2y)

= 2y CoS (y2)
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dy
=
dy
=

10y% + 2y cos (y2) 2x

dz

[10y + 2y cos (y2)} 2x
% B 2x
dr 10y + 2y cos (y?)

B x

~ y[5+cos (y?)
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4. Use implicit differentiation to find
d2
42— 22 = 0.

dx?




dy

First of all we must find —.

Aoy - 42
dxr (43:) dr (2?/)—
d 2
S8xr — 4y -

dx

d

dz
dy
=
dy
=
dy 8z
de 4y

2T
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2

Now we calculate d—z using the quotient rule
x

Py vz (22) —22F (y)
dz2 2

2y 25, (y) -
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Show, using implicit differentiation, that
z(z? + 3y?) = c is the solution to the

differential equation

d
o? +y* + 2ajy—y = 0.

d




We need to differentiate the equation
z(z? + 3y°) = ¢

z° + 3zy® =c
S @) 435 () = = (o
3z° + 3y2% () + 393% (y°) =0
3z% + 3y® + 3:13(% (v?) - j—i =0
dy

322 + 3y° + 3z - (2v) -
:U—i—y—i—:v(y)dx

% o (CU2 1 y2)
de 21y
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We now substitute our expression for

d
d—y into the differential equation
x

d
% + o +2xydzyz: 0

(2® +y?)

= ()
21y

% 4+ y? 4 2xy —

o+t —z — 1yt =0.
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2.10.4 Revision Questions

The following questions are about the

key ideas in this section.

1. Suppose that y = f(u) where

dy
= . What is —=7
u = g(x) at is ——

2. Given the implicit equation

f(y,z) = 0 write down the

procedure to find %
dx

2.10.5 Exercises

Hint. There’s always an exam question

on implicit differentiation.




