Discrete Population Models for a Single Species: Quiz 2002

Question 4. (15 marks)
It has been suggested that a means of controlling insect numbers is to introduce and maintain a number of sterile insects in the population. One such model for the resulting population dynamics is

$$
x_{n+1}=\frac{R M x_{n}^{2}}{(R-1) M x_{n}^{2}+M x_{n}+S},
$$

where $R>1$ and $M>0$ are constant parameters, and S is the constant sterile insect population.
1.
(a) Show that when $S=0$ the difference equation can be simplified to

$$
x_{n+1}=\frac{R x_{n}}{(R-1) x_{n}+1} .
$$

(1 mark)
(b) Show that when $S=0$ the fixed points are given by $x=0$ and $x=1$.
(c) Calculate the eigenvalues associated with the two fixed points and hence determine their stability.

3 marks
2. We now fix $R=2$ and $M=1$. The 3 figures in parts (b)-(d) show the graph

$$
\begin{aligned}
x_{n+1} & =f\left(x_{n}\right), \\
& =\frac{2 x_{n}^{2}}{x_{n}^{2}+x_{n}+S},
\end{aligned}
$$

for various values of S, and the straight line $x_{n+1}=x_{n}$.
(a) The figure on this page shows the graphs $y=f(x)$ and $y=x$ when $S=0$.
i. Suppose that the initial population $\left(x_{0}\right)$ is $x_{0}=0.5$. By drawing successive iterations on the cobweb diagram below determine the long-term evolution of the population.
(1 mark)

ii. Explain what your cobweb plot shows.
(1 mark)
iii. How would your answer to part (ii) change if you were to chose a different value for x_{0} with $0<x_{0}<1$?
(1 mark)
(b) The figure on this page shows the graphs $y=f(x)$ and $y=x$ when $S=0.15$.
i. Suppose that the initial population $\left(x_{0}\right)$ is $x_{0}=0.5$. By drawing successive iterations on the cobweb diagram below determine the long-term evolution of the population.

1 (mark)

ii. Explain what your cobweb plot shows.
iii. How would your answer to part (b)(ii) change if you were to choose a different value for x_{0} with $0<x_{0}<1$?
(c) The figure on this page shows the graphs $y=f(x)$ and $y=x$ when $S=0.35$.
i. Suppose that the initial population $\left(x_{0}\right)$ is $x_{0}=0.5$. By drawing successive iterations on the cobweb diagram below determine the long-term evolution of the population.

(d) Comment on the biological implications of your answers to parts (a-c) of this question.
(2 marks)

