Discrete Population Models for a Single Species: Quiz 2001

Question 3. (15 marks)

1. Consider the difference equation

$$
x_{n+1}=r x_{n}^{2}\left(1-x_{n}\right) .
$$

(a) Show that the fixed points of this equation are given by $x^{*}=0$ and $x_{ \pm}^{*}=\frac{r \pm \sqrt{r(r-4)}}{2 r}$.
[3] marks
(b) Determine the values for $x_{ \pm}$when $r=5$ (correct to 5 decimal places). Calculate the corresponding eigenvalues and hence determine the stability of the two fixed points $x_{ \pm}$.
[3] marks

This page left blank for your working
(c) The 3 figures in parts (i)-(iii) show the graph $x_{n+1}=5 x_{n}^{2}\left(1-x_{n}\right)$ and the straight line $x_{n+1}=x_{n}$. Explain why the fixed points of the system are located at the intersection between $x_{t+1}=f\left(x_{t}\right)$ and $x_{t+1}=x_{t}$.
[1] mark
i. Suppose that the initial population $\left(x_{0}\right)$ is in the range $0<x_{0}<x_{-}^{*}$, where x_{-}^{*} is the smaller of the two fixed points $x_{ \pm}^{*}$. By drawing successive iterations on the cobweb diagram below determine the long-term evolution of the population.
[2]marks

Explain what your cobweb plot shows.
ii. Now suppose that the initial population $\left(x_{0}\right)$ is in the range $x_{-}^{*}<x_{0}<A$, where A is the point marked on the figure. By drawing successive iterations on the cobweb diagram determine the long-term evolution of the population.
[2] marks

Explain what your cobweb plot shows.
iii. By using similar techniques as above, explain what happens if the initial population is now in the range $A<x_{0}<1$.
[2] marks

Explain what your cobweb plot shows.
(d) Suppose that x represents the population of vermin on an island and that the current population size is x_{+}^{*}, where x_{+}^{*} is the larger of the two fixed points $x_{ \pm}^{*}$. Is it possible to eradicate the species by killing a fraction of the current population size? Justify your answer by referring to your answers to part (c).
[2] marks

