Discrete Population Models for a Single Species

Quiz 2002
Question 1. Consider the difference equation

$$
x_{t+1}=f\left(x_{n}\right),
$$

where f is a function.
(i) Explain what it means for the triple $\left(x_{0}^{*}, x_{1}^{*}, x_{2}^{*}\right)$ to be a period-3 solution.
(ii) The triple $x_{0}^{*}=0.96069, x_{1}^{*}=0.145380, x_{2}^{*}=0.47834$ is a period- 3 solution of the equation

$$
x_{t+1}=3.85 x_{t}\left(1-x_{t}\right)
$$

(a) Calculate the eigenvalue of the period-3 solution.
(b) Is the period-3 solution stable or unstable? Explain your answer.

Question 2. Consider the logistic equation with fixed harvesting

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)-h .
$$

Suppose that $r=2$ and $h=0.05$.
(i) Show that the fixed points of this model are $x_{2}^{*}=0.44365$ and $x_{1}^{*}=0.05635$ (both correct to five decimal places).
(ii) Calculate the stability of the two fixed points.
(iii)
(a) Sketch the functions $y=x$ and $y=2 x(1-x)-0.05$, indicating the location of the fixed points.
[2 marks]
(b) Using your diagram and your answers to the previous parts of this question explain how the long-term population density depends upon the initial value $x_{0}\left(0 \leq x_{0} \leq 1\right)$.
(c) A company harvests deer from a wilderness area. Due to a drought the population density changes from 0.44365 to 0.02 . Should the company change its harvesting strategy? Give reasons.

