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ABSTRACT. In this paper, it is shown that when v = 40, A = t|G|

and t » I the necessary conditions

A= 0 (med |C|)
Mv=-1) = 0 (mod 3)
wiv-1) = 0 (mod 12)
are sufficient for the existence of a generalised Bhaskar Rao
design GBRD(v,b,r,4,3;G) for the elementary abelian group, G,
of each order |G|. Sufficlency is established for most other

cases with t > 1, subject to the extra condition

|G| 2 2 (mod 4), v = 4 => t even.

Substantial partial results are obtained in the case t = 1.

Introduction

Bhaskar Rac designs with elements 0, *1 have been studied by a
number of authors including Bhaskar Rao [1,2], Seberry [34], Simgh [371,
Sinha [381, Street [40], Street and Rodger [41] and Vyas [42]. Bhaskar
Rao [1] used these designs to construct partially balanced designs and
his technique was improved by Street and Rodpger [41]. Another technique
for studying partially balanced designs has involved looking at
generalized orthogonal matrices which have elements from elementary
abelian groups together with the element 0. Matrices with group
elements as entries have been studied by Berman [3,4], Butson [5,6],
de Launey [8], de Launey and Seberry [101, Delsarte and Goethals [11],
Drake [13], Lam and Seberry [20], Rajkundlia [32,33,35], Shrikhande [36],
and Street [39].

Recently Mackenzie and Seberry [21] have shown that such designs

: give maximal or the best known codes over ternary and g-ary alphabets.
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Suppose we have a matrix W with elements from an elementary

abelian group G = {hl’hZ""’hg}’ where W="h A + h A, + ...+ thg;

171 22
here Al,...,Ag are vxb (0,1) matrices, and the Hadamard product
* 5y 4 .
Ai Aj {1 # 1) is zero. Suprose (ail,...,aib) and (bjl""’bjb) are
the ith and jth rows of w; then we define ww+ by
+ -1 -1
WW = PO . PN
) =@y sensay) o (BLT5eeesbp)

with - desipgnating the scalar product. Then W is a generalized
Bhaskar Rao design or GBRD +f

m
i = + I
{i} WW rl k (ciG)Bi

(ii) N=4 + ...+ Ag satisfies NNT =rl+ I AB.,

that is, ¥ is the incidence matrix of a PBIBD(m), and (ciG) gives the
number of times a complete copy of the group G occurs,

Such a matrix will be denoted by

GBRD..(v,b,r, kA ,lm;cl,...,cm). In this paper we shall only be

10

concerned with m= 1, ¢ = /g, and Bl =J -1, In this case W is

the incidence matrix of a2 PBIBD{1}, that is, a BIBD. Hence, the

equations become:

(1) W'

X
Tl + —é'q (J-1}

(1) wN©

(r=30T + AJ,

Thus W is a GERDG(v,b,r,k,l). Since A{v-1) = r{k-1) and bk = vr,
we sometimes use the notation GBRD(v,k,x;G).

These matrices are generalizations of generalized weighing

matrices and may be used in the construction of PBIBDs.

We use the following notation for initial blocks of a GBRD. We
say (aa’bﬁ"°"cY) is an initial block, when the Latin letters are
developed mod n and the Greek subscripts are the elements of the

group, which will be placed in the incidence matrix in the positioms
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indicated by the Latin letters. Thus, we place a in the (i,a-1+i)th
position of the incidence matrix, 8 in the (i,b-1+i)th position, and

50 On.

B’.-.’CT)

by placing in the position headad by Xz and by row yﬂ the element

We form the difference table of an initial block (au,b

{x-v) -1 where (x-y) is mod n and Gn_l is in the abelian group.
gn .

A set of initial blocks will be said to form a GBR difference
sat (1f there is one initial block) or GER supplementary difference sete
{1f more than one} if in the totality of elements

(x-¥) 1 (mcd n, G)
3n

each non-zero element ag, a(mod n), g € G, occurs AI|G| times.
Examples of the use of these GBRSDs are given in Seberry 337,
This paper makes continual use of the following theorem.

THEOREM 1.1.1. (FLam and Seberry) Suppose there exists a
GBRD(k,J,A,3G;)  and

i} a GBRD(v,k,lA;GA), then there exists a BGRD(v,j,hAAB;CAxGB);

i) a BIBD(v,k,\), then there exists a GBRD(v,j,lAB;GB);

iii) j vows of a generalized Hadamard matriz GH(h,H), then thers
erists a GBRD(k,j,lBh,GBXH);

i) h = j i8 a prime pover, then there exists a GBRD(%,j,ABh;GBXH)
vhere H <8 the elementary abelian group of order h.

We note tHat generalized Hadamard matrices GH(h|G[, ) can be
regarded as GBRD(h!G|, h|G|,h1G|, G), and hence used in the above theorem
since they exist for hlG| a prime power and other orders (see Street
[397, Seberry [31,32], and Dawson [711. De Launey [8] has obtained some

Tesults on the non-existence of gemeralized Hadamard matrices.

Using results of Hanani and Wilsen with those of Lam and

Seberry we have:

COROLLARY 1.1.2  Suppose there exists a pairwise balanced design

231



B[K,h,v] where K = {kl,...,kb} and @ GBRD(k ,j,u;GB) for each

i
ki ¢ K, then there exists q GBRD(v,j,Au;G). Hence

i) if us0 or 1 (mod &), u 2 & and there erists a GBRD(k,j,};C)
for ke Ki = {4,5,8,%,12}, then there is a GBRP(u,Jj,r;G};:

i) if u = 4 and there exiets a GBRD(k,j,A;C) for all

z = {4,5,6,7,8,9,10,11,12,14,15,18,19,22,23}, then there

i8 a GBRD(u,],*:G);

ke K

it} if uv =1 (mod 4) and there exists a GBRD(k,j,*;G) for all

ke Hi = {5,9,13,17,29,33,49,57,89,93,129,137}, then there

eriats ¢ OGBRD(u,j,A;G);

v £f w = 1 (med 3) and there exists a GBRD(k,j,x;G} Jfor all
ke Hi = {4,7,10,19}, then there erists a GBRD(u,j,A;G).
The next result is a slight improvement on the result of Lam
and Seberry (1983) where the existence of k-1 mutually orthogomal latin

squares was required. The result may be proved by adjusting the marrix

in the proof

THEOREM 1.1.3. Suppose there exists ¢ GBRD(u,k,’3;G) with a subdesign
on w pointa{the values w=0 and 1 are allowed), a GBED{v,k,};G), and
k-2 mutually orthogonal Latin squaree, then there exists a
GBRD{v{u-w)+w,k, ;G) with subdesigns on u,w, und v pointe,

Remark 1.1.4. In thils paper we are interested in the case k=4; so we
only need a pair of orthogonal latin squares; hence u-w may have any

value except 2 or 6.

1.2 Small Generating Sets.

In this section we prove those results on generating sets used
in this paper. First, we make some defipitions, using the notation

in Wilson's paper [45].
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Definition 1.2.1. [Le# the sets I, K, and L be sets of integere

(not necessarily finitel.

i) A pairmiise balanced design (PBDIK,v]) is a pair (X,4) where
X,EX| = v, is a set {of points) and 4 a class of subsets A,
|A| e K, of X (called bilocks) such that any pair of distinct
points of X 48 contained in exactly one of the blocks of A,
If K = {k}, we write PBD[k,v] instead of PRD[{k},v].

ii) We let B (K) denote the set of integers v for which there
exists a PBD[K,v]. If L = B{J), then J is said to
generate L. K 1is saild to be eclosed if K = B (K). An

element £ of L is said to be essential if 2 ¢ B ({1'r||1=,L|n'r<£]r).,[:|

If L is closed and % £ L 1s not essential, them & may be
removed from any generating set of L {Proposition 5.1, Wilsom [457).
One aim is to find small generating sets for the following

L = {5,8,9,12,13,...}, {4,10,13,16,19,...1.

Definirion 1.2.2. 4 group divieible degign (CDD) on v points 8 a

triple (X,5,4) where

i) X is a set (eof points),

ii) 8 1is a class of non-empty subsets of X {called groups) which

partition X,

iii) A 18 a class of subsets of X {called blocks), each containing

at least two points,

iv) no block meets a group in mweore than one point,
v) each pair {x,y} of points not contained in a group is
contained in precisely one block. 0

There is a fundamental composition constructien feor GDD’s,

" Comstruction 1.2.3. ({(Wilson [451).

Let (X,5,4) be a GDD and let a positive integral weight S, be
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assigned to each point x g X. Let (Sx: x ¢ ¥} be pairwise disjoint

sets with |S [ =5 ., With the notation S, = U 5 for Y < X, put
x b ¥ X -
xeY
* %
X = SX’ s = {SG: G e 5},

For A ¢ 4, we have a natural partitien I, = (SA,{Sx|xeA}); we suppose

A
that for each block A& ¢ 4, a GDD

(8, {sx[st}, B,)

* * k &
is given, and put 4 = u B,. Then (X ,5 ,4) 1is a GDD,
Asd A

There is a speclal class of GDDs.

Definition 1.2.4. A transpersgl design TD{(n,t) 1s a GDD with n

groups, each of size t, and block size n. [

THEOREM 1.2.5. (Macleish)

If n=d;q,reeneay i8 the prime decomposition of n > 1,
then there existe a TD(k,n} whenever

k< 1+ min 9~
<iz<
l<izr O

In constructing generating sets, we make considerable use of

transversal designs.

LEMMA 1.2.6, Let T be the set of integers t for which there exists
a TD(v0+1,t). Then there ewists an integer U(VO} guch that for all

t ¢ T there extsts a t' e T with

v —_
0 <t t < o(vo)

Froof, Let Py sPysc-sPy be the primes less than v By 1.2.5, if

0
t =1 (mod P1P2"'Pr)’ then a TD(v0+1,t) exists. So we may take

o(vg) = PyPy---Ppe 0
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Remark 1.2.7., In general, we can do better than pIPZ"'pr' For any

integer VO > 1, define T(VG) to be the length of the longest sequence

of successive numbers divisible by at least one prime less than Vg
Then t(vo) = PPy .. and we may take ¢ (v0)= T(v0)+1. We note that

(&) = 1(5)

il

3 (check by considering the residues mod &). 0

We now deal with the set L = {5,8,9,12,13,16,17,...} by slightly

altering a constructlon appearing in Wilson's paper [Lemma 5.1, 45].

LEMMA 1.2.8. Suppoee there erists a CGDD on v poinis, with block sizes
from {5,6}. Suppose further that the GDD has at least two groups and
that all groups have aqt least two pointa. Then 4v is not egsential in
B({5} v (8,12,16,20,...1).

Froof. We can produce two GDDs whose groups have slize 4 and whose
blecks have size 5 by deleting a point from each of the designs
PBD[5,25] and PBD{5,21]. The first GDD has 6 groups and the second
has 5 groups. We now use these two GDD s together with the one on

v peints in Construction 1.2,3 to produce a GDD ¢n 4v points. This new
GDD will have block size 5 and all its group sizes will be divisible by
4, We now produce a PBD[{5} u {8,12,16,...,4(v-1}},4v]. Let (X,5,4)
be the GED on 4v points., We define the required PBD, (Y,{) as follows:

Y = X and C=4au{¢| Ge 3}

Note that it was necessary that our GDD on v points had all group sizes
greater than cne;otherwise, some of new bleocks, G ¢ 5, would contain

only 4 points.

THEOREM 1.2.%.
{4v|vzl}cB ((5,9,13,17,29} u

{4v|v=2,3,4,5,6,7,8,11,12,13,17,19,21,22,23,31,33}),

Progf. Given a TD(6,T), we may construct a GDD satisfying Lemma 1.2.8
provided t > 1 and

5c = v 26t with v # 5¢ + i.
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Now T(5) = 3; so, if a TD(6,t} exists, then a TD{6,t")

exists for some t' satisfying 0 < t' - t = 4. If t 2 22 then

6t = 5(t+4) + 2.

So GDDs satisfying Lemma 1.2.8 may be constructed for all
v = 5,23 +2 =117, Hence &4v is not essential in B {({5}u{év|vz2}} for

v 2 117. We can rule out the following cases as well

t=25 25 = v = 30 v # 26
t =7 35 = v £ 42 v # 36
t =8 40 = v = 48
t=9 45 = v £ 5%
t =11 535 = v 2 66 v # 56
t =13 65 = v = 78
t =1a 80 £ v = 95 v # Bl
t =17 85 = = 102
t =19 95 £ v £ 114
t =23 115 = v = 138 v # 116

Thus

B ({5} u {av|v = 2,3,...D)
= B {({iv|v=2,3,...,24,26,31,32,33,34,56,56,79,81,116} v {51).

We may eliminate many of these by allowing the block sizes of our PBDs
on 4v points to come from {5,9,13,17,29} as well as from smaller
miltiples of 4. Table 1 {Appendix) shows how we eliminate certain

values of v from the small set above to obtain the result.

COROLLARY 1.2.10 {4v,4v+l|4v,4v+l25} = B ({5,9,13,17,29,33,49}
v {4v|v=2,3,...,8,11,12,13,17,21,22,23,31,33)).
Proof. By a theorem of Wilson [Theorem 5.1(iii), 45]
{ﬁv+]]v21} = B {({5,9,13,17,29,33,49,57,89,93,129,137H.

57,89,93,129, and 137 may be removed 1f we allow block sizes 8,12, and

16, These constructions are given as fellows:
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57 Use the SBIBB(57,8,1).

89 Use TD(§,11). Add one row to form a PBD[{12,8},89].

g3 See Lemma 1.3.4,

129 Add a row to a TD(16,8).

137 Take 7 rows from a group of a TD(9,16) and complete to form a

PBD[{8,9,16},137]~ 0

We now find a small generating set for B {4,10,13,16,19,...1.
THEOREM 1.2.11. 1B {4%,10,13,16,19,...} = B {4,10,19,22,34,43,55,79,1991}

Proof, Proceeding as before, see [Lemma 5.1,45], we find that Jv+l is
not essential if there exists a TD(5,t) and

4t = v 5 5t with v # 442

Hote that we rule out v=4t+2 because the PBDLK,3v+l]
constructed in [Lemma 5.1, 45] would have a column of size 7.
Since 1t(4) = 3, we find that, provided v = 78, 3w+l is not

essential. We may rule out the frllowing v:

£t =4 16 = v = 20 v ¥ 18
t=25 20 £ v £ 25 v # 22
t =7 28 = v = 35 v # 30
t =28 32 £ v 5 40
t =29 36 £ v £ 45
t =11 44 £ v £ 55 v # 46
t =13 52 = v = 65
t = 16 64 = v £ 80 v # 66
t =17 68 s v = 85

So pur small set ds

{4,10,13,16,19,22,...,46} v {55,67,79,82,91,139,199}.

We rule out many of these values in Table 2 (Appendix) to obtain the

result,

O

We now cobtain a theorem which will prove most useful when either
desgigns do not exist, or cannot be constructed, for some, possibly

essential, element v of a closed set, For example, GBRD(V,4,5;22)

is known for all v where 5 < v = 40 except for v = 28,34, and 39,
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Theorem 1.2.14 {proved below) will be used in Section 4.3(Lemma 4,3.3)
to prave

{v|v 2 5, v # 28,34,39} .
= B ({v]5 = v £ 25} v {v|v = z1(mod 6) and 25 = v < 130}}.

Hence, the designs in question exist for all v = 5 except possibly

for v = 28,34, 39.

It is known that 28 is essential (see Section 1.3), while it
remaing undecided whether 34 and 39 are essential.
Before proving Theorem 1.2.14, we rephrase some standard

results due to Hanani and Wilson.

Definition and Notation 1.2.12., TLet S and K be sets of positive

integers. Define

[v,8 @ K = {v|]v =v s +k where s = k}.

. t
let s and t be integers, and let SS dencte

{v]ssvstlns;
let SS and St respectively denote the sets
{v]vzs} n 8 and {v|osv<t} n s,
THEOREM 1.2.13. (Wilson, Hanani) Let v_ be a positive integer. Lot
S be a set of positive monbers such that for all t e 8§ there exists

a TD{v_+1,t),Let K be a set of positive integers containing the

integers v_ and v +l. Then
B(SuK 2 {lv]s &K}
Further, if s+l e S u K, then B (5 v K) 2 {v,s, v stl}.
Proof. Suppose v £ [ql 5 & K; then v = g8 + k where 8 ¢ 5, k ¢ K and
s 2 k. Form a GDD,{X,5,A), on v points with block sizes from {q+l,q1

by remwoving all but k points from a group of a TD(q+l,s}. A4
PED({s,k,q+i,q},v), (X,B}, may be formed by letting B = A u S. 0

THEOREM 1.2.14. ILet v_ 2 2 be an integer. Let $ be an increasing

infinite sequence such that for all t e S there exists a TD(v _+1,t).
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Let K be a set of positive £ntegér3 eontaining v_ and v +l. Let

k = Min {k} and suppose there exists a 1TD(v _+1,t)) for some t_not
keK

necessarily in 5. Let T be the set of elementa t £ 5, t > vt tk ,

for which there doce not exiat a pair t' €S and k ¢ K such that
thzr, and t=v t'+k. Then

v, b 4k -1
B( S vTuKu{t} 20v1s5eK,

o

Finally let U be the set of all v > v t +k_ such that there does not
exist a pair t' e S, k € K satisfying t' >t and v = v t'tk; then

v, btk -1
B(, S v BuRKult D) 2 {vav it +k}.

o

Proof. Let e 5 {s 1 and let ¥ be the lesst integer n such that
° Ba=0
v btk -1
’SN+n}' Note that : 5 =P_.

o

zv_t_+k . Put Pn={s

Sat1” 0*%1 e

Now suppose

(v,J). # K= B(P v TuKutl.

It is shown that
[VOJPn+1 #KcB(P uTuKuy it ).

By Theorem 1.2.13, it is sufficient to show that

Syamt] © B(P, uTukvu It .

If s € T, then the result is immediate; if s

Hint+l N4n+l * T

then there exiat t € § and k ¢ K such that t > t, and

hence

s v°t+k. Since v, 22, t<s

N1~ N+ntl?

Spumy & [V, P 8K EB(P UTUKRUY {e b,

To complete the induction and the proof of the first assertion of the

theorem, one notes that by Theorem 1.2.13

lv IP 8K =B (PuTuKu it ),
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Finally, since T c U and
{vz v t +k } = ([v_1séK) v U,
v°t°+ko

vevi+k}ecB (tos . UTuKut . 0
Remark 1.2,15. The theorem 1s still true if S is finite, but then
T v K is infinite and generally unmanageable, EBesldes, nothing is
gained over Theorem 1.2.13., Thecorem 1.2.14 is particularly useful when
there exists an integer +*(S) for an infinite sequence 5 with the
property that, if t € §, then there exists a t' € § such that t' > t
and t'-t = 1(8). If there exists such an integer, then for all

t » vt +k there exists a t'
L= -] <

£ 5, where vt +-kG L v°t+voT(S)+ko.
It then becomes easy teo determine T and [v 15 & XK. By Remark 1.2.7,
such sequences, 5§, satisfying the conditlons of the theorem are readily

avallable. a

The focllowing result, needed in 7.3, is an application of
Theorem 1.2.14.

LEMMA 1.2.16, Let L = {5,6,7,9,10,11,12,13,14,15,16,18,19,20} and
g = {v|v =+ 1(mod 6}}. Then

B(Lu,s 0 s {28} 2 (v > 130}

Proof. PBD(K,v) will be needed for v = 21,25,47,52,53,54, and 63.
There exists a BIBD(21,5,1} and a BIBD(25,5,1}, and the TD(7,9),
TD(6,9), and TD{7,7) may be adjusted to obtain the designs for

v = 47,52,54, and 63. The design on 533 points is obtained from a
TD(7,9} by removing 8 points from the first group and 2 from the next.

We now apply Theorem 1.2.14 with v, = 5, £ = 25,

§ = {vlv = #1(mod 6)}, and X = L u {21,25,28}. To do this it is
necessary to determine U.BY¥ Remark 1.2.15, for all v = 130 there exists

ate 5 such that v = 5t+r where 0 < r £ 25, and if r & K then

v ¢ U. 8Sp if v e U then v = S5t+f where f = {8,17,22,23,24} and
t =21 {mod 6). If t = -1 (med 6), then (r-4) and (t+2) ¢ 53
if £ =1 (mod 6), then (t-2) and (t-6) £ 5. So the values below

are not in U,
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5t + 8 = 5(t-4) + 28 t 235

5t + (17,22,23,24) = 5{(t+2)4(7,12,13,14) ¢t = 25

t =1 (mod 6):
5t + 8 = 5(t-2) + 18 t = 31;
5t +17 = 5{t-6) + 47 t = 55;
S5t + (22,23,24) = 5{t-6) + (52,53,54) t = &l.

S50 one may draw up a table of the undisposed of values of v.

] v 25 29 31 37 43 49 55 61
8 133 153 - - - - - -
17 142 - 172 202 232 262 292 -
22 147 - 177 207 237 267 297 327
23 148 - 178 208 238 268 298 328
24 149 - 179 209 239 269 299 329

By removing points from the firstc group of each of
TD(11,13), TD(12,13), TD{10,19), TD(11,19), TB{10,25), TD(11,25),

TD(16,19), TD{6,63), one can construct PBD(B (L u 255130 v {281y, W

for all v except v ¢ {133,147,153,179,207,267}. Wow there exists an
SBIBD(133,12,1) and the required PBDs can be obtained for v = 153 and
207 by removing rows from TD(10,16) and TD{13,16} respectively. The

three remaining wvalues are dealt with below.

v Construction

147 Remove 1 point from 2 distinct groups and 7 points from

a third group of TD(12,13).

179 Remove 10 points from one group and 9 points from

another of TD(12,18)

267 Remove 15 points from ome group and 18 points from
another of TD(12,25}.

Since all elements of U are contained in B (L v {28}u 255130),

By {28t u 5 0 2B uuy 28 v s 5 tvlv 2 1300,

25
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1.3 Some Pairwise Balanced Designs

We now prove the existence of some PBD designs we use later.

First we prove that 28 is essential in the set {v = 5}.

LEMMA 1.3.1 Suppose there exists a PBDLR,v] and that for some
k ¢ K, k < v, there is at least one block of size k. Then, letting

M = min{m} we have,
mek

k(M-1) < v-1.

Proof., Since k < v, there is at least one point which is not in the
block of k elements. Removing this point produces a& GDD with groups of
size = M-1, Since only one point of any block may be contained in any

one group, k(M-1) = v-1. 0

We include a similar lemma which is not needed for our result on
28,

LEMMA 1.3.2. OSuppeose there exists a PBDIK,v] with two (or move) blocks
of slae k < v; thewn

(k-1) (M-1) = v-k.

FPrgof. Let B1 and B2 be two blocks of size k. Remove B] from the

design. This produces a GDD on (v-k) points with at least k-1 groups

of size = M-1. Thus (k-1){M-1) < v-lk. 0

This lemma ensures that any PBB[K,34] has at most one block of

gsize B, while Lemma 1.3.1 excludes all block sizes 9 < k < 34.
THEOREM 1.3.3. v = 2B ig an eseential element of the set v = 5,

FProof. 1f 28 is not essential, then there exists a PBD[K,28] with

k <28 for all k€ K. Now M= 5: so 4k £ 27. Hence, by lemma 1.3.1,
K = {5,6}. Thus we need only disprove the non-existence of a

PBDf {5,6},28].

Suppose there exists such a design. Let s be the number of
ls in the first row, Let a of these s columns have precisely five

Is and a6 have precisely six ls.
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Now the first row has inner product 1 with each other row. Bo
there are precisely 27 = v-1 1s under the s 1s in the first row.

Counting column by column, there are Aas+53 1s under the ls in the

6
first row.
27 = + .
Aas 5a6
The only possible solution to this equation is a5 =3 and
a, = 3. Sc s=6, We can do this for any row,

We can now determine the number of columns. Because each row
has precisely six ls, there are precisely 6+28 = 168 1s in the entire

design. Now the first six rows are without loss of generality

1

1

1

1 11111
1 11111

1 11111

So there are at least 18 colummns contalning five Is and 13 columns
containing six ls. The number of Is in these columns alone is 168; so

there can be no more columns.

Because this design has index 1, there are exactly %(28.27)=378
occurrences of a pair of 1s in a column. But we have determined that
there are 13 columns with six 1s and 18 with 5. Counting the pairs of
ls column by column, one obtains only 13. 6, 5/2 + 18.5.4/2 = 375. It
follows that no PBD({5,6},28) exists. 0

LEMMA 1.3.4. 93 ¢ B {5,8,9,12}.

Proof. Take 9 rows of a GH{1ll,Z and obtain the usual GDD by

11)
replacing the elements by their right regular watrix representations.
Delete the first 7 rows. This gives a GDD on 92=8x11+4 points with

block sizes %=8,9, The proup sizes are B of size 1! and 1 of size 4.

Put in columms of ls beside the groups to give a PBD({8,9,4,11},92,1).
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Place a row of 9 ones above these columns. Now we have a

PBD({8,9,5,121,93,1) as required. 0

LEMMA 1.3.5. There erist: PBD{{11,12},44,3), PBD({10,11,12},43,3},
PBD({9,11,12},42,3), PBD{{8,9,11,12},35,3), PBD({8,9,10,12},34,3),
PBD({7,8,9,12},33,3), PBD({7,8,9,11,12},32,3), PBD({7,8,9,10,12},31,3),
PBD({7,9,12},30,3), PBD({6,7,9,11},29,3), PBD({6,7,9,10},28,3),
PBD({6,9},27,3). dlso 36,...,41 ¢ B ({9,10,11,121,3).

Frocf. We use the following (corrected} BIBD(45,12,3) given by
J. Wallis [43] where

100 010 001
I= |o10 I= oo 1 M= |100
001 100 010
J = I+L+M,
-y FIoryr 1 oryforg
J L L LIM MM I I I
J MM ML L LT T
J I LM MLl LM
J LM IIML |1 L M
JimM r Lit rmM|lI LM
P A Y2 I S VI N ML
Y=|r M 1| M L I J ML
M i LiL I M J I ML
I M LT LM ML
ML T LM 11 ML J
L oMM oL ML J
A S BN I S B t L My
M MM|L L L 1L M J
L L LA oa oM 1L M J

In each case the result for i, i = 27,...,44 1is obtained by

taking rows 46-1,...,45 of Y, 0
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LEMMA 1.3.6. There exist: PBD({12,13,14,15},68,3),
PBD({5,9,10,11,12,13,14,15},58,3) and PBD({7,9,10,...,15},58,3).

Froof, We first construct the PBD({5,9,10,...,15},58,3). Haemers [16]
has constructed an SBIBD{71,15,3). Comstruct its incidence matrix
and rearrange the first column until the matrix appears as in Figure

(1).

Ist’ ~ 2nd ith

1
1 1
10 rows . a 8 rows . x e
1 1
o o 1
3 rows } b 5 rows | T orS=yp £, <3
g 0 1
1 1 l
5 rows c 7 rows z 9 £3
1] 1 J
e .
)
0 0 } 2
9 ‘ .
53 rows : 15— [a+b+c) 51 rows 1 hs o
. o] i
0 : .
0 o §
(1) (11}

Now the inner product of every column with the first is 3. So
if the number of ls in column j of the first figure and the first 10
rows is a, in rows 11 to 13 is b, in rows 14 to 18 1s ¢, and in the

last 53 rows is 15-{atbtc), we have
atc =3, 0<a, c£3, 0=<h<3,

So the number of omes in the last 58 rows, 5 and 15-a~-b pives the

PBD({5,9,...,15},58,3),

Now we construct a PBD({7,9,10,...,15},58,3), Arrange the
incidence marrix of Haemers’ design as in Figure (IT). Again the imner
product of every column with the first is 3. Let =x,y,z be the number
of ones in the second column of the second figure and with

v =5, xtz = 3. Let ei’fi’gi’hi be the number of ones in the ith
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columm in the respective positions. Then Ei+gi =3 and £, £ 3; =0

i

h, = 15-e;~f,-g. % 9. Hence the last 58 rows have 7,124z or

+H] = -
g5 hi 9 ones

The design on 68 points is obtained by removing three rows. 0

1EMMA 1.3.7. 17 ¢ B({5,6.8,9},3); 22, 23 ¢ B {({7,8,9},3);
and 24 ¢ B({8,9},3).

Proof, TFor {1 = 22,23,24, consider rows 26-i,...,25 of the following

arrangement of the SBIBD(25,9,3) from J. Wallis [43], where J,I,L,M

are as in Lemma 1.3.5, e = (1,1,1), e = eT.

r £ £ [ -
e e €
e e e
e e 2
f r f F--F ST T=7
XA=|c ¢ € i 1 ! ! I I
€ € € I M £ I M L
€ € € I L M 1 L M
I g7 I J—TI 771 !
1 Jf—I FJ—-1 Fi I J—T
SR i1 1 ro7-1l

For 17, consider rows 2,3,11,...,25 of this same SBIBD.

LEMMA 1,3.8. ZLet t = Mt. Suppose there srists o BIBD{v,b,r,k,})
and @ GBRD(v,v,pt;G) where g = [G|. Then there exists a
PBD({v,gkl},vg,A+t) and a PBD{{v,v-1l,kg,kg-s},vg-s, +t) for

s = 1,2,...,8. .

Proof. Let X be the GERD with entries replaced by their permutation

matrix representations. Then X is a GDD{vg,v,A, = 0, 12 =t, m=g).

1
Let Y be the matrix obtalned from the BIBD by veplacing its zeros
and ones by the gxl matrices of zeros and ones vespectively. Then Y
is a GDD(vg,gk,ll =r,l2 =h,m=g)., Thus 2 = [X,Y] 1is a
PBD({v,gkl,vg,A+t). Removing the first s rows from 7 gives the

result. 0
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Now for all gq = 2t, there exists an SBIBD(q2+q+1,q+1,1).
Also, for all prime powers pr there exists a GH(Zpr;EA(pr)); 30

if 2pr2q2+q+1, there exists a GBRD{q2+q+1, q2+q+1, qpr;EA(pr}),

because g iz even Thus, we have

COROLLARY 1,3.9. Let g = 2° ond pr be a prime power such that
Zpr = q2+q+1. Then there exiats a PBD({q2+q+l,(q+1}pr},
(a%+q+1)p%,q+1) and @ PBD({a>+atl,a%4q, (a+1)p%, (a+)pT-sl,

(@%+p+13pT-s,q+l) for s =1,2,..., p .

Erarple 1.3.10 Let q = 2. Then there exists a BIBD(7,3,1) and a
GH(Zpr,EA(pr)) for all prime powers pr. Thus we have
PBD({7,3p°},7p" .3) and PBD({7.6,3p",3p -8}, 7p'-s,3).

Thus p’ = 4 gives PBD({7,12},28,3) and PBD({7,6,12,11},27,3).

pT = 5 gives PRD({7,15},35,3) and PBB({7,6,15,15-5},35-5,3)
s = 1,2,3.
p* = 7 gives PBD({7,6,21,16)},44,3).

pr = 9 gives PBD{{7,6,27,22},58,3).

COROLLARY 1.3.11. Let p  be a prime power not equal to 3 or 4.
Then there extists a
r T r T
PBD({21,..,21-5,5p",...,5p -s},21p -8,5}, s=0,1,...p .
Proof., J.E. Dawson has shown that. GH(4pr;EA(pr)) exists for all prime
powers p z 5. There exists an SBIBD{2],5,1). Hence there exists a
PBD((ZI,...,21-s,pr,...,pr-s],ler-s,S) for all p.r excapt possibly

3 and 4 by removing the appropriate number of rows.

]
Example 1.3.18 A GH(ZO,ZS) can be used to give a GDD(105,21,RI=0,h2=4,
m=5} by putting the rows of all ones of length 20 on top. Proceeding
as before, using the BIBD(21,5,1), replacing elements by 1x5 eolumns
of zeros or ones, respectively, we get a PBD{{21,25},105,5).

2. The Existence of GBRD{4,4,t,C;8).

A GBRD(&,A,t]G|;G) is equivalent to four orthogonal rows of
index t for the group G, four rows of a GH(4IG|;G), or a
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(|G[,4;t,G) difference matrix. DPifference matrices have been studied
by Jungnickel and Drake, and we refer the reader to their papers for a
definition. Such matrices have wide applications giving mutually
orthogonal latin squares, mutually orthogonal F-squares, orthogonal

arrays, group divisible designs, transversal designs, and A-geometries.

Generalized Hadamard matrices are known to exist for the

following orders, where p is prime and {Zp}i is the elementary

abelian groups of order pi.

i+j

1} GH(p ,(zp)i) for all 421, § = O.

ii) Gﬂ(zmp“k,(zp)“) for all O <m<k, k21, =21,
141) GH(&pa,(Zp)u) for all p .

t =
If p~1l=r for scme prime 71, then there exist:

tk+£r53

1v) CH(P ,(zp)l) for all 1s1=<t,1<3jzk,

Lzdi or L=10

m ak+ti+2rsj

v) cu(2%p Lz )™

P
i‘:

lsactg,i<d<= L za or L=20,

The case for four orthogonal rows is as yet incomplete: the
cagse to be decided iz |G| = 3 or 6 fmed 9) with 6] £ 2 (mod 4)
and t = 1. Part (i) of ocur thecrem below indicates that the range of
values of t for which a GBRD(4,4,t|G|;G) exists depends on whether
or not |G| £ 2 (mod 4). This is because of a non-existence theorem

proved by Drake [13].

THEOREM 2.1. ({Drake, Theorem 1.10, 13] Let G be a finite group with
a cyclic non-trivial Sylew 2-subgroup T. Thew there 5 no
CBRD(3,3,tl¢|;6) for odd «t.

Noting that the existence of a GBRD(é,A,t]G[;G) necessitates

the existence of a GBRD(3,3,t|G|;G), we are now able to prove

THEOREM 2.2. Lzt G be a product of elementary abelian groups. Then
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the following statements are frue.

z)

ii)

iit)

Froaf.

1)

i)

i11)

There existe a CBRD(&,4,t[C|:C) for gome odd t <if and only if

the gondition |G| = 0,1, or 3 (mod 4) is satisfied.

If the condition im part (1} {ig not satisfied (i.e.,
|G| = 2 (mod 4)), them a CGBRD{4,4,t|G};6) ewmiste if and only

if t > 0 ig even.
Suppose |G| = 0,1, or 3(med 4), then we have

{a) 16| = 4 (med 8) or |G| £ 3,6 (mod 9) <implies the
exizstence of GBRD(4,4,t|CG|:G) for all t = 1

() |G| 23 or 6 (mwod 9) {8 sufficient for the ewistence of
@ GBRD(4,4,t|G|36) for all ¢ x 2.

The Sylow 2-subgroup of G is non-trivial and eyelic if and only
it |¢| § 0,1,3 (mod 4). So, by Drake's Theorem,if |G|Z2(mod 4),

then no GBRD(&,ﬁ,t|G :G) exdsts for t odd. To prove the

converse, we need only prove the three remaining parts of the
theorem.

If |G§ =z 2{mod 4), then consider B = ZZXG. |H! = 4 {mod 8);

so we may proceed to the proof of (iii).

G; % 2(mod 4), then all the

factors in the prime decomposition of |G| are grearer

(ay If |¢| 4 3,6 (mod 9) and

than 3. 5S¢ we may use the first four rows of suitable
= 4(mod 8).
if |G} $ 3 or 6 {mod %}, we are finished; so we mav

assume G = 22X22X23XH where 2,3 [ |H| and H is

generalised Hadamard matrices. Now suppose 1G

elementary abellian. 5S¢ it suffices to exhibit a

GBRD(4,4.12,22X22X23).
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1 a W wl aw? aw b ab  bw  bw? abw? abw
1 w ab  bw w2 bw? a aw b abw aw? abw?

1 wi bw b abw aw? ab abw? aw a w bw?

() From the GH(9;Z,) and the GH(6,Z,), we may obtain 2
GBRD(4,4,3t;23) for all t 2 2. Wow suppose |G| =3 or

§ (mod 9). Let 2t be the highest power of 2 dividing
|G[. since |G| # 2 (mod 4), all the factors in the prime
decomposition of (|G|/3) are greater than 3. Using
suitable generalised Hadamard matrices, we may obtain a

GBRB(4,4,t|CGl; |G|} from a suitable GBRD(4,4,3t3Z,) for

all t =2, 0

Remavik 2.3, We note that, as & consequence of this thecrem, the

existence of GBRD(4,4,tg;EA(g)) 1is completely decided for t« = 2.

3. Groups of odd order, 3 | |G

There is a generalized Hadamard matrix GH([G|,G) for every
order |G| which iz a prime power. In particular there are four rows
of a GH([Gi,G) for every odd order |G| where 3 [ |G|. Taking the

Kronecker product of these four rows we obtain a GBRD{4,4,h3;H) for

eyery h = p?l pzz ..+, where h is odd, Py # 3 for any i, and
i
H = GlXG2 .., where Gi is the elementary abelian group of order pz
By Hanani's thecrem
rt{v-13} = 0 {mod 3) and Atv(v-1) = 0 {mod 12}

are necessary and suffiecient conditions for the existence of a

BIBD(v,4,%t). Hence using Theorem 1.1.1 (i1} we have

THEOREM 3.1. Suppose h is odd and that 3f/h. Then

Alv=1) = 0 (mod 3) and Av(v=1) H O{mod 12)
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are necessary and sufficient conditions for the existence of a

generalised Bhaskar Rao désign GBRD{v,4,xh,EA(R)).

Thus the necessary conditlons as stated in the abstract are
sufficient for the existence of & GBRD(w,b,r,4,%;EA(h)) when 2 and 3
do not divide h., The remainder of the paper gives a partial solution
of the existence question for the group EA(h) where 2 or 3 does not
divide h.

4. Group of order 2,

4,1 The group 22 with A = 2.

THEOREM 4.1.1., Let v = 1 {(mod 6) be a prime power. Then there exicts
a GBRD(v,4,2;22).

Proof. Let =x be & generator of the cyclic group of GF{v)/{0} and

i 2fH A+
X 3 X

Ci = {xl’ 1 where v = 6f+1; then

16,C43,(0,C,3,...,10,¢; 1

are the required initial blocks which are developed to give the design.
These initial blocks give the differences

e R

or, since =1 e Cf,

Cyrere1CpysCaerniChp g

with the negative sign attached, that is, one copy of the cyclic group

with the negative sign attached.

The differences with the positive sign attached are

PE DS S5 OO - SE D02 PITE I

that is
s, (0T, 1= 0,1,

which is one copy of the group.
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Example 4.1.2. The following are GBRD(SS,&,Z;ZZ).

i) 10,1,52,53}, {0,4,6,50}, {0,7,21,47}, 10,9,33,39}, {6,10,26,44},
{6,12,32,40},{0,13,30,35},10,14,27,37},{0,17,24,36},

i) (0,1,2,4},10,3,7,12},{0,5,11,273,{0,6,25,37},{0,15,22,35},
{8,8,26,36}, {0,14,31,39}, {0,9,23,38}, {D,10,21,42}.

They were found on the VAX by Vladimir Vasylenko and T. Mark Ellison

respectively,

Remark 4.1.3. This means that these designs are know for v £ {7,13,19,
25,31,37,43,49,55,61,67,73,79,85,91,97,103,109,115,121,127,133,139,151,
157,163} and not known for the followlng orders <« 500
{145,205,265,319,355,415,493} using Theorem 1.1.3.

Bemark 4.1.4., The necessary condition is v = 1 {mod 3) but no designs
ate known for v = 4 (mod 6). It is easy to show that no

GBRD(4,4,2,22) exists; while de Launey and Sarvate L9] have shown that

there is no GBRD(IO,&,Z;ZZJ.

4.2 The Group 22 with & = 4,

THEOREM 4.2.1. The ngcessary condition v = 1 (mod 3) I8 sufficient

for the existence of =z GBRD(v,&,A;ZZ).

Proof. We have ({1l {(mod 3)}} = B{4,7,10,19}., For v = 7,10, and 19,
let € be the marrix representation of a cyclic permutation. Replace
the "signed group" elements al,él, by Cl, —Ci, respectively, in the

following matrices

e e a ¢ o+a  €+a
e e a e+a e+a
e a e a eta eta
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e e e e atal F+at F+a® a+a’

2 - -2 - =2 - 3 ;
a a 32 F+a® a+a’ a+a2 ava’
a? a a® a a+a? a+a? a+3? asa?

[XY} where

¥ =
1 1 1 1 1,..1 1 1
e e e e sea  Bta  Ad+ad eta’ a+al| ,
3? a” 3’ a" e+’ e+a’ S+a® eta &ta
| & =2 K I
¥ =
£+a e+a 613'+a5 e~|-r‘_12 e-+a3
vt+a cta  ad+a®  esdl  &+a’
e+a’  era’  a+al e+a e+a cth? c+a?  era?  e+a eta

We note that the order of C in the first, second, and third matrices is

respectively 2, 3 and 6.

a
4.3 The Group 22 with A = 6.
De Launey and Seberry [10] have shown that
THEOREM 4.3.1. AGBED{v,4,6:2,) exiets for v an odd prime powen
greater than 5 and for all v e {v|v < 40 and v # 28,34, and 39}, 0

Remark 4.3.2. Glven these designs for v = 28,34, and 39, we woculd have
the designs for all v = 5. Using another theorem of Wilson and Hanani
we proved that the designs existed for v = 0,1(mod 5}. Theorem 1.2.14

gives
LEMMA 4.3.3. Let § = {v = t! (mod 6)} ad ¥ = {1,2,3,...}. Then

N 25 130
407 c B (SN u 255 3.

0 =5, K= 5N25. Tale t0 = 25 and let U be as defined

in Theorem 1.2.14, By Remark 1.2.15, for all v = 130= 5.25 + 5, there

Proof. Let v
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exist t €8 {t > to) and k € K such that v = 5t+ k. S0 U= $ and,

by Theorem 1.2.14,

25 130 N
B (5N u 255 Ty = 1307,
Also applications of Theorem 1.2.13 first with K = 5N2§
s = {5,7,8,9,11,12,13,16,17,19,23} and vy = 5, and then with

v = 65 K 5N25 and S = {7,8,9,11,12,13,16,17,19,23}, deal with all

values of v, 40 £ v £ 130, except with v = 43,44,49,57,58, and 85.

These are dealt with below.

v
43 ™D(7,6) + 1
44 Remove all but ome point from any two distinet groups of a

TD(7,8)

49 TD(?,7)

57 D{8,7) + 1

58 Remove all but one point from any two distinet groups of a
TD{8,9)

85 ™(12,7} + 1

Theorem 2.2. then produces
THEOREM 4.3.4, 4 GBRD(v,é,&;ZZ) exists for all v © 5 except

pogaihly for ~« = 28,34, or 39. The design does not exist for v = 4.

4.4 The group 22 with » = &,

De Launey and Seberry [10] have proved

LEMMA 4.4,1. 4 GBRD(V,4,12;?.2) exigtes for v

it
I~

LEMMA 4.5.2. A GBRD(v,4,18;2,) ewists for v = 5.

Proof. Taking three copies of the designs obtained from Lemma 4.3.3
Bives the result for all v = 5, v # 28,34,39. Lemmas 1,3.5 and 1.3.6
show thar 28,34,39 ¢ B ({5,6,...,15}, 3); from Theorem 4.3.3,
GBRD(u,&,é;ZZ) exises for u ¢ {5,6,...,15}.
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THEOREM 4.4.3, For t » 1, the necessary conditions, t(v-1)z0 (mod 3)
and v =5 for odd t, are suffictent for the existence of a

GBRD(v,4,2t32. ), v = 4, except possibly when

i} 3 and v = 28,34, or 39;

o
I

1) t=25,7, and v = 28 or 34.

Proof. The second cemstraint only applies in the case v = 4, which
has already been dealt with in Sectfon 2. The first condition places
no restriction on v when t = 0 (mod 3), while if t = 1,2 (mod 3)
then v = 1 (mod 3). By Lemmas 4.4.1 and 4.4.2, when

t = 6at+9b, a,b & N, there exists a GBRD(V,&,Et;ZZ) for all v z 5,

while from Theorem 4.2.1, when t = 6a+9h+2¢c, &,b and ¢ € N, there

axists a GBRD(V,&,Zt;ZZ) for all v = 1 (mod 3}. 0

5. The Group Zg, pz1.

5.1 The Group 23 with » = 3

nl

3, 1 (mod 4).

We have only partial results for v = U (med 4). For

The necessary conditions are that v

v 1 (mod 4), we give a preliminary lemma.

LEMMA 5.1.1, There exicts a GBRD(V,4,3,Z3) whenever v = 1 (mod 4)

18 a prime power.

Froof. Let x be the generator of the evelic group of GF(v)/{0}
where v = 4p+I1,

i p+i  2p+l  3pHi
Let Di = {xé,xi 1,x0p ,xlp I for 1= 0,1,...,p-1.

Consider the set of differences from Dy, noting that -1 = sz.

1 i R i, 3 i, 3
E, = {x (xp—l)l,-x (xp—l)z,ix (x p-—l)o,xl(x p—l)l,—xl(x Pw1)2,

xp+:|'. p+i Pt

P 2 2p+i i
e s i i Cau SINER L CUE DI C S VI

i=0,1,...,p L.
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Thus

- 2p_ i, p_ i 3p_ i, 3p_ i, p_
Ei {Ci(x 1)0,ix {x l)l,ix (x l)l,ix {x l)z,ix {x 1}2}

+
p+i’x2p i’x3p+i

where C, = {xl,x }. We need to show that the elements

i
{ixi(xp—l),ixi(x3p-1)}, i=20,1,...,p~1, give exactly one copy of the
group. Clearly txi(xp—l) # xi(x3p—1). So it remains to show that

i . .
{+x (xp-l),ixi(xap-l)} n {ixJ(xP—l),ixJ(xsp—l)} = @ wunless i = j or

i=j+2p. Ifxl(xp—l)=ix3(xp—l),then x =tx’. Thus i=j or 1=j+2p. 1If

(P-1) = 2 @Pe1) = +x3P1xP), then xt = +9TP qhus 1 = j4p

or 1= 3j + 3p; but this iz impossible a8 1, j € {0,1,...,p-1}. Hence

each group element appears in U Ei with each subscript 0,1,2 exactly
once.
Thus Di(i = 0,1,...,p-1) are initial blocks which when

developed give the required design.

Example 5.].2. There exists a GBRD(9,4,3;23). Let x satisfying
x2 = 2x+2 be a generator of GF(BZ). Then, developing the following

initial blocks gives the resulr:

{ ,x+11}, {00,12,x+2 2x+20} {mod 3,3;23)

%92 102%p 1’
or

{x0,2x+2 .2x

. 0,x+11}, {2x4+1 _,2_,x+2

0221 0,10} {mod 3,3;23)

A complete computer search has shown that GBRD(9,4,3;23)

supplementary difference sets (mod 9,23) do not exist,
LEMMA 5.1.3. There exist GBRD(v,4,3;Z3) for v =1 or 5 {(mod 20).

Proof. We observe that there exist BIBD(v,5,1) for these v.
H = GBRD(5,4,3;23) is given explicitly in the next section. Theorem

1.1.1(i1i) then gives the result.

LEMMA 5.1.4. There exist GBRD(v,&,B;ZB) for v = 8,12,16,20,24,28.
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There 18 no GBRD(&,&,B;ZB).

Proof, Develop the following initial blocks, found by T.Mark Ellison on
a VAX.

v=2_8 (=,0451,,3,), (O, 23397 (de 7:24)3

it D’

v =12 (0, OD’ 1,3 ), (0 ,62) (mod 11,23};

0’ 0 0!7 )’ (OO’ 2,

V=16 (=,00.11,3,), (00,10,50.60), (00,20,6,,8)) (00,37.74.10,)

(mod 15,23);

v = 20 (w’OO’II’SZ)’ (00,21, 2,13 ), (00,31, 1,12 Y, (DO 0’ 32,160),
(00 12 0,100) {mod 19,2 ),

v o= 24 (m,00,11,32), (OD 1 2,13 Vs (0 41,101,162), (0 0 2,9 ¥,
(U 2 2, ), (00 0’ 0,1] } (mod 23,2 )'

V=28 (%,0510,3,), (00,3),8,412,), (04,5 11,5180 (0g210.5,,21)),

(0gs1,.115,14), (0, 17,) (mod 27,2,) .

0 12,5 (8,

0’ 0’ O’ 0* 2 2’

An easy combinatorial argument establishes the non-existence

of a GBRD(4,3,3,4,3;23).
THEOREM 5.1.5. There exists a GBRD(v,4,3;Z3) Jor v =1 {med 4).

Frgof, The theorem of Wilson (M. Hall and J.H. van Lint, (1974), p 35)
shows that it 18 merely necessary to establdish the existence of

GBRD(u,4,3;Z3) for u e H: =1{5,9,13,17,29,33,49,57,89,93,129,137}.

A1l of these except {33,57,93,129} are prime powers and so the
designs exist. Theorem 1.1.3, the existence of the design for u = 8,

and the equalities

33 = 8(5-1) +1
57 = 8(8-1) +1
129 = 8(17-1) + 1,
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glve the result for all the required values except possibly 93, but it

was shown, in Lemma 1.3.4, that

93 = B{5,8,9,12}. 0

LEMMA 5.1.6. Suppose all GBRD(ét,4,3;23), t£1,t < ty exiat. Then
GBRD(&t,&,B;ZB) erist for 4t = {8,16,20,36,40,56,60,64,72,76,80,96,

100,104,116,120,128,136,140,156} (med 160, In addition,
GBRD(4t,4,3;2,) ewiet for 4t e {24,28,92,144,192,204,208).

Proof. Since GBRD(V,&,S;ZB) exist for v = 1 {(mod 4) (from Theorem

5.1.5), we have their existence for B8v and 5{w-1}+l, that is for
orders 4t = 8(mod 32) and 16(mod 20}. In addition, if designs exist

for orders 4s, s < tO’ they exlst for 32s and 20s, rhat is, for orders

4t = O(mod 32) and O(mod 20). This gives the first result.
The other results are obtained by noting:

24,28(cf. Lemma 5.1.4);92 = 13(8-1)+1;144=12x12;
192=12x16; 204 = 12 x 17; 208 = 16x13.

PROPOSITION 5.1.7. If there exist CBRD(v,4,3:Z,) for

v & {32,44,48,52,68,84,88,124,132}, then these designe exist for
v = 0,1 (med 4), v = 5.

Proof.From Corollary 1.2.10 {4u,4u +1|4u,4u + 1 = 5}
= B(5,9,13,17,29,33,49} U _
{4ulu = 2,3,...,8,11,12,13,17,21,22,23,31,33}.
From the previous two lemmas, we have GBRD for all these values except

those stated. 0

5.2 The Group 23 with x = 6.

THEOREM 5.2.1. ZLet v = 4p+3 be a prime power. Then there exists g
GBRD(V,4,6,23).

Frogof. Let g be a generator of the eyclic group of order GF{v)/{03}.
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+ +
Consider the sets Di = {gé,-gé,gi 1,—gli 1} for i = 0,1,...,2p.

Each Di yields differences

i+l

i i i i
o g (8t1) )28 (+1),,% (g1} .28 (g-1),.

iZgé,iZg

Hence, as 1 runs from 0 to 2p, we get two copies of the group

with each subscript. Thus the Di can be used as initial blocks to

develop the required design. 0

THECREM 5.2,2. There exists a GBRD(v,4,6;23) for all v =z &.

Proof., By Hanani's theorem (cf. Hall (1967,p.248)), it 1s merely
necessary to establish the existence of GBRD(u,4,6;Z3) for all

ue Ki = {4,5,6,7,8,9,10,11,12,14,15,18,19,22,23}.
We give a GH(G,ZB), G, found by Rajkundiia (1978). So any
four distinct rows give a GBRD(&,4,6;23). Also, we give a

GBRD(5,4,3;Z3),H:

1 1 1 1 1 1 ¢l 1 1 1 1

1 1w w ow W 1 0 1 i w

1 w1 woow 1 H 0 w? W
G = and In =

1 w 1 [T w? 1 uw w? Q 13

1w W ow 1 w 1 w?t o ow 1 0

1 [ w? w, s 1

By a theorem of Hanani, a BIBD({v,5,2} exists for v =1 or
5 {mod 10). So, combining with H as in Theorem 1.1.l1, we have the
existence of GBRD(V,A,&;ZB) for v 2 1 or 5 (mod 10}.

The following is a GBRD(G,&,E;ZB):
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1 1 : 1 1,1 1 1 1 1, 9o o o o)
1 w0 0 w1 o w? w0 0 1 1 1 1

w r w 0 0|0 1 o w w1 o 1 w w?
o w 1 w olw o 1 o W] 1 1 0o ¥ w

o 0 w 1 @ lw w o0 1 © 1w w0 1

w 0 a W 110 w w? o0 1 1 w® W 1 0

Designs for the remaining values can be constructed as indicated
in Table 3(Appendix). The starred desipgns were found on a VAX by
T. Mark Ellison.

5.3 The Group 23 with & = 9,

THEQREM 5.3.1. There exists a GBRD(v,4,9;23) for v =0, 1 (mod 4).
Proof., By Hanani's theorem (cf. Hall (1967,p.248}), it 1s merely
necessary to establish the existence of GBRD(u,&.é;ZB) for all

1
u e Ka = {4,5,8,9,12}.

Now a GH(9,Z3) exists: so any four distinct rows give the
result for u = 4, Using three coples of the GBRD(S,Q,B;ZB} =H

from Theorem 5.2.7 glves the result for 5; for u £ {8,9,12}, cne

develops the initial blocks as indicated.
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= 3,040,
v =8 {wrlorzlt 41}: (m112!22l41} ' (mf10!22!40)! (00:10 1 l)
.20
(0y01,52,.6,), (0,,1,,3,,5} (mod 4
= o .1 ,4.,5), (0,1, ,4,,:8;)
v k] (00;10.20,30); (00111;22.42). ( orlyrtye O) ( o*tartgrByte
. .7 mod 9,2Z.);
(00,12.31,51). (00,21 40 2) { 31
- . 1 f
v = 12 (m,oo,ll,Szl, (00,10,30,?1), (00,12,40,62), three copies o

each, {mod 11,23);

or

=] oo v tl !4 r5 ’
(©,00,1,.2,) . (2,0 ,1,3}, (=,00,2,,1,0. (05,15.44,5,)
(05,15,5,. 7,0 ¢ (05, 15,4,,7)), (04,20, 457,00 (84,2,,5,.8,),

(00,2 50,?2} (mod 11,23).

2

5.4 The Group 23 with » = 3¢, t » 1.

THEOREM 5.4.1. The necessary conditione are sufficient for the
exigtence of a GBRD(v,ﬁ,Bt;ZB) when t > 1,

Procf. The result is cbtained by combining the previous results for the

group 23 and using multiple coples of the designs for A =6 and 9.
0

5.5 The Group 23 * 23 with X =9,

The necessary condition for the existence of a

GBRD(V,4,9t;23X23) is that tv(v-1} = 0 (mod 4).

Example 5.5.1. A GBRD(V,4,9;ZBX23) exists for v = 4,5,9.
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v = 4 Use four rows of a GH(Q,ZSXZB)‘

1 w w2 a aw aw2 a2 aw aw a 0 aQ 1 1 1
2 2
1 w2 w a2 azw2 aw Q 0 I+ a aw  aw a aw aw
2 2 2.2 2 2 2
1 a a 3 0 0 w Wa wa Wa wWa W aw w a
22
a o o] a2 a 1 w2 w2 2 wza aw azw w oaw aw 1

v = 9 Develop the following indtial blocks:

(01,1 2310, (O 3

1* 5w z‘l) s (01,13W2,4 33 )

17 1ar 95242 aw’"w

(Ol,lazw,Baw,?awz), 0,1 2.2,4 .62}, (01,2W2,4awz,6a2)

(mod 9, Z.%Z.).
373 0

LEMMA 5.5.2, A GBRD(v,4,9;23XZ3) exiets for v = 1, & (mod 12) and
v = 0,1,4,5 (mod 20).

FProof. Use BIBD(v,4,1) and BIBD(v,5,1) with the designs of the
previous example., Also use the BIBD(v,3,1) to form PBD{{4,5},v-1)
to obtain the result for 0,4(mcd 20).

5.6 The Group ZBXZ3 with & = 18.

LEMMA 5.6.1. There exist GBRD(V,Q,IB;Z3XZ3) for v =1 (mod 3},

v 2 I{mod 4) and v = 0,1,4,5( mod 10). Designe alsc exist for
v e {4,8,12},

Procf. PBD{{4,5},v] may be obtained for v = 1 (mod 3) or
v = 0,1,4,5 (mod 10) from BIBD(v,4,2} or BIBD(v,5,2). Since a
GBRD(V,4,9;23X23) exists for v = 4,5, Corollary 1.1.2 may be applied

to give designs when v 2 l(mod 3) or w = §,1,4,5 (med 10}, A

GBRD(V,&,S;ZB) is known for v = 1 (mod 4) and v & {4,8,12}.
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Since a GH(6,23) exists, one may apply Theorem 1.1.} {iil) to obtain

the remaining designs. 0

This lemma gives designs for
ve {4,5,7,8,9,10,11,12,13,14,15,16,17,19,20,21,23}, If designs were
known for v = 6,18, and 23, then Hanani'’s result (Corcllary 1.1.2 (i1)
would guarantee the existence of designs for all v 2 4. Using the set
of initial wvalues above and Theorem 1.2.14, the question of the
existence of the desipns is settled in all but 5 extra cases,
THEOREM 5.6.2, There exigt GBRD(v,A,IS;ZBXZS) for ali v z 4
except poseibly for v = 6,18,23,26,27,38,42 and 47. If there exists
a GBRD(6,4,18;Z3XZ3), then designs exist for all v =z 4 except

possibly for v = 18,23, and 27.

Proof. We apply Theorem 1.2.14 with v = 4, t = 25, K={v|4svs22,
v# 6, 18} u {34} and § = {v|v = #1 (med 6), v # 47} u {45}, To de
this, it is neceasary to find designs on v points where v e § and

25 = v = 104.

Let V= {6,18,23%,26,27,38,42,47}; then we prove that designs
exist for all v, where 24 £ v < 104, except possibly for v e V. 4An
application of Theorem 1.2.13, with v, =4,

s = {4,5,7,8,9,11,12,13,16,17,19,20}, and K = {v]4 < v < 20, v # &, 18},
deals with all values of v § V except

v ¢ {21,22,28,29,30,31,34,46,50,66,67,70,98,101,102,103,104}. For

v & {28,50,70,98}, there exist s,t ¢ K such that v = st; also,

67 = 11(7-1)+1, 66 = 5(14-1)+1, 46 5¢10-1)+1, 34 = 11{4-1)+1,

31 = 1004-1)+1, 29 = 7(5-1)+1, 22 7(4-1)+1 and 21 = 5(5-1)+1;
PBD({7,8,10,11,12,13},v] may be obtained for v = 104,103,102, and
101, by removing rows from a 1TD{§,13]. Finally v = 30 may be dealt

It

[]

with by using Lemma 5.6.1.

Thus designs exist for all v, 104 2 v 2 4, except possibly

for those in V; in particular, with S5 as defined in the opening

_ paragraph of this proof, designs exist for all v e 255104. To apply

Theorem 1.2.14, it is necessary to prove that designs exist for all
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v g U. Take v _,t ,K, and § ‘as defined in the opening paragraph. By
Remark 1.2.15, for all v =z v t +k = 104, there exists an

f, 4= £ <20, and t e 255 such that v = 4t+f. If £ # & or

18, then v é U. If t = -1 {mod 6}, then t+2, t-4 ¢ 255. 5o

4{t-4)+k or 4{(t-2)+k where %k e K, and hence v $ U. If
t 45 and v = 4t+6 or 4t+18, then v = 4.43+14 or 4.41+34; hence
v * U. Finally, 1f t = l{med 6), then v = 4t+6 or 4t+18 = 4(mod 6).

Therefore u < {v|v =1 (mod 3)}. But by Lemma 5.6.1. designs exist

v

It

for all v =1 {(mod 3}, v = 4,

Since designs exist for all v & 255104 UuUuKuU {t }, designs

exist for all v 2 104, and indeed for all v = 4 except possibly for

v e V.

Now suppose a GBRD(6,4,18;Z3X23) exists. Then, because

26 = 5{6-1)+1 and 42 = 6x7, there would exist a GBRD(V,4,18;23X23)

for v = 26,42. Finally PBD[{4,5,8,6},38] and PBD[{6,7,5},47] may
be obtalined frem TDE5,8] and 1TDL7,7]. One then obtains designs
on 38 and 47 points, completing the proof of the second statement of

the theorem. 0

5.7 The group Z ij with % = 9t, ¢t » 2,

3

THEOREM 5.7.1. The necessary conditione are suffictent for the
existence of GBRD(V,&,Qt;23xz3) for ¢ » 2.

Proof. It t is odd, then v = 0,1 {(mod &) and v 2 4, while if =«
is even then v Z 4. Suppose t 1s odd, t = 3. Consider the case
t = 3. A BIBD{v,4,3) exists for v = 0,1 (mod 4). Alsoc a

GBRD(&,4,9;23XZ3) exists; 3o one may apply Theorem 1.1.1 (ii) teo

obtain the designs for 2ll v = 4, v = 0,1 (mod 4). By Theorem 5.5.2,
a GBRD(V,&,IS;ZBXZB) exists for all + = 0,1 {mod 4). It follows

that, if t 1s odd, t = 3, designs exists for all v = 0,1 (mod 4),

v oz 4.

Now suppose t is even and t = 2m, m > 1. By Theorem 2.2,

there exists a GBRD(4,4,3m;23) for all m » 1, By Theorem 5.2.2,
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there exists a GBRD(V,4,6;23) for g1l v > 4. So, applying

Theorem 1.1.1 (i), one has GBRD(V,&,Q(Zm);ZBXZB} for all v 2z 4.
]

5.8 The group Zg , 8 = 0,

THEQREM 5.8.1. The mnecessary conditione are sufficient for the

extetence of a GBRD(V,&,3St;Z§) for t =1 and s > 0, except

posstbly when s =t =2 and v e {6,18,23,26,27,38,42,47}.

Proof. The result for s = 1 follows from Theorem 5.4.1, while that
for 8 = 2 follows from Theorems 5.6.2 and 5.7.1. When s = 3, there

exiats a GH(Bsul;EA(3s_1)) whare 38_1 > 4, Since the necessary
conditions are sufficient for the existence of GBRD{V,&,Bt;z3) when
t > 1, one may apply Theorem 1.1.1 (iii} to gilve the required
designs for s = 3,

a

6. The Group ZE, p > 1.

6.1 The Group 22x22 with X = 4,

There is a useful construction when there are n—{v;4;i}

supplementary difference sets.

LEMMA 6.1.1 Suppose there exist n-{vij4;\} sa.d.s.

{tli,t21,t31,t41}, i=1,...,n, and Z,%2, = {e,a,b,ab}. Than
11 24 31 44 14 21 31 ai 14 24 34 41 14 24 31 4i
{t art oot ot e},{t LI b,tab]‘,{t ot potaprt al},{t: e tant sty

1 =1,...,1,

are 4o-~{vi4;4)) CBRSD5{generalized Bhaskar Rao supplementary

difference sets).

Example 6.1.2. (0,1,2,4) (mod 7) is a 1-{7,4;2} s.d.s. and
(00100208005 (Ogln20,8.0), (0,1,,2, 0,4 ), (0,03 .2,,4,)

{mod 7,22X22) are GBRSDS and hence can be used as initial blocks to
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generate a GBRD(?,&,S;ZZxZZ):
LEMMA 6.1.3. There {8 no GBRD(?,4,4;szz2)

Proof. The four inequivalent BIBD(?,I&,S,&,&) cannot be signed.
This is proved in de Launey and Sarvate [9],

LEMMA 6.1.4. There exists a GBRD(V,A,4;ZZXZ2) when v = 1,4 (mod 12},

Proof. There exists a BIBD{v,4,1) for v = 1,4 (mod 12) which is

combined with a GH(4,22X22) to give the result.

Eemark 6.,1.5. The problem iz as yet unsolved for v = 7,10 (med 12}.
For v = 7, there is no design. For v = 19 a design can be obtained

by using the following sets as initial blocks.

GBRD(19,4.4;22X22}(Oe,le,2a,3b),(Oe,lb,ﬁb,Sb),(OE,Zab,68,14b)
(Oe’3e’gab’12b}’(Oe’3ab’8e’lzab)’(oe’ﬁe’sa’laa)
(mod 19,2,%2,) .

Remark 6.1.6. By Theorem 1.2.11, 1if GBRD(V,4,4;22X22) exist for

v e {4,10,19,22,34,43,55,79,199}, then the designs exist for all

v 21 (mod 3) except v= 1ot 7.

u

xZ, with X = B.

6.2 The group 2 2

2

THEOREM 6.2.1. The necessary condition v = 1 (mod 3) <& sufficient
for the existence of a GBRD(v,é,S;ZZXZZ).

Froof. A BIBD(v,4,2) "exists for v = 1 (mod 3) and mey be combined

with a GH(A,szz to get the result.

5)

6.3 The group 22X22 with A = 12,

THEOREM 6.3.1. GBRD(v,4,12;2,x2,) exist for v = 0,1 (mod 4).

Proof. A BIBD(v,4,3) exists for v = 0,1 (mod 4) and mey be combined

206



with a GH(A,szzz) to get the result.

As the next two Lemmas show, more structured designs exist,

LEMMA 6.3.2, Suppose v = 4p + 1 18 a prime power, Then there is q
GBRD(v, 4,123Z,%Z,) -

Froof. Let x be a generator of GF(v)/{0}. Then
(xl,xp+i,x2p+1,x3p+1}’ 120,100,010

are p - {v;4;3} supplementary difference sets. By Theorem 6.1.1,

we have
i p+ti  2pti  3pHi i p+i Zpt+i  3pHl
(xe’x e X o X e Y, { e)xa :xb ’xab Y,
1 p+i ZpH 3pti i pHi 2p+i 3pHl, . _ _
(xe’xb 1 Xan 0%y ¥, ( e'xab *a ’ )i 0,1,...,p-1

are 4p - {v;A;lZ;szzz} GBRSDS and can be used as the initial blecks

of a GBRD(V,&,IZ;ZZXZZ).

LEMMA 6.3.3. Suppose v = 4p + 1 ig g prime power, Then there is a
GBRD(v+1,4,12;2,2,).

Proof. Take x a generator of CF(v)/{0} and choose initial blocks

i p+i  Zp+i  3p+l i pHl  Zp+i  3pH _ _
(xe’xe Ry Xy IR C AP SR St ¥, 1 =0,1,...,p-1
i pH 2pti 3pHL i p+l 2pti  dpHl, . _ _

(xe’xb ’xab ;xa ), (xe’xab :xa ) Yy i 1y00.,p-1

- 3p P_ w 2p_ P_
(e’ﬂe’(" —l)a,(x yYs ( E,OE,(X 1), = l)ab).

o Jp P_ w p P
( e,Ge.(x D)ys(x ”ab)’( E,Oa,(x Ly (x l)ab)(mod V,szzz}-
To prove the theorem, we observe that the difference = ,» = @
e a b’ ab
occurs the correct number of times and, using x2p = -1, that the

other differences are exactly the differences of the blocks

G . p _2p 3p ¢ p _2p _3p
(xe *5%sb**a b (xe’xab’xa ' )
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which we have removed from the set of initial blocks used in the

previous theorem.

J

LEMMA 6.3.4, GBRD{v,4,12: Z 2) gxist for v = 4,7,9,11.

Proof. These designs can be constructed as indicated.

V4 (s n0,1 0,20, (0 0 41,2 ), (2 0,1 1,2 ), (5,0, 01,2 )
(mod 3, szzz)

V=7 (0,,0,.2,,3),00,,1,,2,,3,),(0,1 13,4005 (0,1 ,3,,4,)
(Oeslh; abss ) (O ,lab,B 5 )(I‘i‘lod ? 2*22);

v =9 (Oe’ 19’26’33)’(0e’1a’2e’3b)’(Oe’la’zab’ﬁab)’(Oe’lb’!‘e’ﬁa)’
(0 ab’l' 6) (0, b’qe’6a)’(0e’ ab’ b,5) (0 2 4 6 )
{mod 9, ZZXZZ);

v Al (1,2,,4,.80)0(2.04 8,5 ), (6.8, ,5 .10, ), (8,,5,,10,,9 ),

(5710,,9: 7,000 (102,06 58, (2,4 8, ,5.),(8,,5,,10,,9),

(418,35,,10,), (51,7 19 ,10,) (mod 11,7,x2,)

The designs constructed in this section verify the existence

of GBRD(V,A,IZ;ZZXZZ) in all bur three cases.

LEMMA 6.3.5. Let Q= B ({4,5,6,7,8,9,10,11,12,14,18,19,22}). Then
q o {v|v > 23},

Proof. We first note that 31,30,29,28,27,26,25,24 € Q. The following

table gives the constructiom.
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v Construction

31 BIBD(31,6,1) exists.

30 Delete a row from BIBD(3L,6,1).
29 Delete g row from TD(6,5).

28 Use TD(4,7).

26 Add a suitable row to a TD{5,5).
25 Use TD(5,5).

Thus K = B ({4 < v < 32|v # 15,23,271).

Now we show Q > & = {27 < v £ 129}, A TD(5,t) exists for
t =17,8,9,11,12,13,16,17,1%9,25,29; so a PBD{Q,v] exists for all
v £ A except possibly v e {46,47,66,67,96,97,...,103}. All TDs used
are glven by McNeish's theorem except TD{5,12); that design may be
obtained from the TD(7,12) which is known to exist (see Drake [131).
A PBD{Q,v] may be constructed for the remaining values of v by
deleting rows from a TD({6,8), TD(6,12}, TD(6,17), or a TD(6,19).

Hence @ = A,

Now take vy = 5, ty = 25, K = {4 < v <« 25|v # 15,231},

S ={v z *1{wod 6)}, and U as defined in Thecrem 1.2.l4. By that

theorem, B (K u 253129) contains all v = 130 except possibly those

of the form v = 5t+15 where ¢ 2 *1{mod 6). So, since in that case
v = *2{mod b},

129
B (K u 255 ) =2 255 .

Finally, applying Theorem 1.2,13 with Vg T 4 and K and §

as above, one obtains PRD[K u Zsslzg,v] for all v > 129 except when

tl {mod 6) {(then v =tl(mod 6)). But these all

29) 2 {v > 129}, and hence Q@ > {v>4|v = 15,23},
O

v = 15+4t where ¢t

. i
exist so0 B (K u 255

THEOREM 6.3.6. Gnm(v,a,lz;zzxzzj exist for all v z 4 except

pogsibly for v =15 or 23.
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Proof. We observe 19 = 6(4-1)+1 and 22 = 7(4-1)+1; =0 by the
previous results of this section GBRD(V,A,IZ;ZZ*ZZ) exist for all

4 = v < 23 except wv=15. Applying the Lemma gives the result for
v > 23. '

6.4 The group 22x22 with % = 24,

THEOREM 6.4.1. Let v = 3 (mod 4) be g prime power; then there exists
a GBRD(v,&,Z&;zzxzz).

Proaf. let x be a generator of the cyeclic group of GF{v)/{0}. Then

i+l i+1 i
~ ’_ge s 8B )

the design is constructed using the initdial blocks (g;,g e

i i+ i+ i
and (ge,ga l,-gb 1,—g;b), each three times (i=1,2,...,%(v-1)).

Example 6.4.2., For v = 7, we use the blocks
(25453055,) s (31,0603, (1, 2,,5,,6,)
and

(2,04,03y05,0) 0 (41,060,303, (1,2 .5, .6 )

a’ b’ ab a’ b*'a a’’b* ab

each three times to form the GBRD(?,&,Z&;zzxzz),

THEOREM 6.4.3. There exists GBRD(V,A,ZA;ZZXZZ) for v = 4.

Proof. There is a GBRD(IS,A,Z&;ZZXZZ) obtained by develeping the

following blocks obtained by using Lemma 6.1.1 on the 6-{15;4:6}s.d.s.

{0,1,5,10}, {0,2,5,10}, {1,2,4,8} five times (mod 15).

Use Remark 6.3.4 and the Hananl-Wilson theorems. The only
previously uncompleted cases are v = 15 {just given) and v = 23
obtained from the last theorem.

6.5 The group Zyx2, with A = 4t,
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THEOREM 6.5.1. The necessary conditions are sufficient for the
eristence of a GBRD{V,A,ﬁt;zzxzz) when t 2 4,

Proof. Whem t = 1 or 2 {(mod 33, v 2 4 and v =1 {mod 3); if
£ =0 {mod 3), v = 4, By Theorems 6.3.6 and 6.4.3 designs exist when
t=2o0r 3 for all v = 1{mod 3) and v 2z 4; so the necessary

conditions are sufficient for t = 1 or 2 {(mod 3).

By Theorem 6.3.6 there exist GBRD(V,&,IZ;ZZKZZ) for
v e Kif{15,23}. ¥ow a BIBD(15,7,3) exists and a PBD[{7,8,91,23,31

may be obtained from the BIBD(25,9,3)., It follows that

GBRD(V,4,36;22X22} exist for all v e Kz and hence for all v 2 4.

5
Combining this result with Theorem 6.4.3, one obtains the required

designs for t = 0 (med 3), t > 1.

6.6 The group Zzp, Pz 3

For p 23 and t » 1, the question of existence of
GBRD(V,A,ZPt;Zzp) is completely decided while for p = 1 or 2 and

t » } there remalin but a few undecided cases,

THEOREM 6.6.1. Suppose t > 1 and p = 3. Then the necessary
comdition t{v-1} = 0 (mod 3} i85 sufficient for the existence of a
GBRD(v,4, 2Pt EA(2D) ).

Proof, Suppese t = 2 and p 2 3. Then it is necessary that vZ1 (mod 3).

Now there exists a BIBD{(v,4,2) for v = 1 (mod 3) and there exists a

GH(ZP;EA(ZP)) for all p 2 1. Since 2¥ » 4 for p 2 3, Theorem
1.1.1 {11i) may be applied to give the required GBRD(v,4,20t;EA(2P)).

Now suppose t = 3 and p = 3. By Theorem 4.3.3 there exist
GBRD(v,4,632,) for all v > 4 except possibly for v = 28,34,134,44,
and 58. Hence Theorem 1.1.1 (iii) may be applied as before to obtain
the designs for all v = 5 except for v = 28,34,3%9,44, and 58. Finally
there exists a GBRD(&,&,B.ZP;EA(EP)), and hence designs on
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28 = 4x7, 34 = 11{4&=1)+1, 44 = llx4, and 58 = 19(4-1)+l points. When
v =139, a PBD[{4,5,6},v] may be obtained from a TD(6,7), and
subsequently, by Goreollary 1.1.2, a design on 39 points.

If 3} t, then v = l{mod 3). Letting a and b satisfy
t = 2at+3b, one can obtain a GBRD(V,Q,Zpt;EA(ZP)) by taking  copies of

a CBRD(v,&)2P Y EA(2®)) 2nd b coples of a GBRD(v,4,2P.3;EA(2P)). If

Sit, let t = 3m and take m copies of a GBRD(V,ﬁ,Zp.S;EA(Zp)).

Combining Theorems 2.2, 4.4,3, 6.5.2, 6.3.6, and 6.6.1 one

obtains

THEOREM 6.6.2. The necessary econditions:

(i) t(v=1) = 0 (mod 3)
(ii) p=1 aid t odd => wv=z25

are sufficient for the existence of a GBRD(V,A,Zpt;Zzp) when p =z 1

and t > 1 except possibly when

(a) p=1,c=3, ad v = 28,3 or 39,
(b} p=1, =57 and v =28 or 34,
() p=2,t=3 and v = 15 or 23.

7. The group 26.

7.1 The group 26 with A = 6.

Remark 7,1.1. A GBRD(4,4,6;Z6) does not exist by a simple

combinatorial arpument.De Launey and Sarvate have shown [9] that a

GBRD(S,Q,S;ZG} does not exist.

THEQREM 7.1.2, GBRD(V,&,&;ZGJ exist for v=17,%,...,16,18,20.

Proof. The initial bloeks for these designs are given in Table 4
{Appendix}.

7.2. The Group 26 with X = 12,

LEMMA 7.2.1. Suppose v = 4p+l 18 a prime power. Then there exists a
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GBRD(v,4,12;2).

Proof. Let = be a generator of the cyclic group of order GF(v)/{0},

p+i 2p+1  3p+i

Consider the sets D {x3, 1 %o N

}, 1 =0,1,...,4p-1. These
have differences

o (xP -1)4,x (x? _1) Jxt (P )a,xp+i(xp—l)5,xi+p(x2P—1) XTGP

2p+1 p
-1,

x2p+i(x2P—l)3,x2p+i(x3p—1)2,x3p+1 3p+i

oP-1) = (x2p—1)0,xi(xp—1)5

We see that every non-zero difference occurs exactly twice with each

subscript.

0

LEMMA 7.2.2. OSuppose v = 4p+3 18 a prime power, v > 4. Then there
erists a  GBRD(v,4,12:2.).

Proof. Let x be a generator of the cvelic group of order GF(v)/{0}.

i op+i 14
i 2p i, 1 x2p+1+l

Congider the sets D, -{x3 0 Xy X, ot

=0,1,...,4p. These
have differences

i+l 2p 1, 2p+l

+x (= —1) tx (x —1)3,X (X‘l),, {x o

1), o5t &Py 5 (1)

2p+l
x P (x-1)
2
Xl(x+1)2,x1(x+l)1,xl(l—x)l; so we have two copies of the group with

each subscript.

[

THECREM 7.2.3. There exists q GBRD(v,&,lZ;Zs) for wv =z 4,

Proof. Table 5 (Appendix) gives GBRD(v,é,lZ;Zﬁ) for

v e {4,6,8,10,12,14}, Lemmas 7.2.1 and 7.2.2 give all the remaining

values of K24 except 15,18,22, Two copies of GBRD(V,Q.G;Ze), given

in Table 4, give designs for 15 and 18. Also, 22 = 7(4-1)+l. Hence
GBRD(V,A,IZ;ZG) exist for all values of K 2 and we have the result

4
by using Theorem 1.1.2.
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7.3 The group 26 with 2 = 18.

LEMMA 7.3.1. There exists a GBRD(V,.&,IS;ZB) for v = 5,6,

Proof. To establish the lemma we first note that if

is a matrix with elements from the ring O+G, where G 1s an abelian

group, with rows xl,...,xv which have the property that
3%, + X "%y = 20G while % E; = AG 1n every other case, then the
matrix

-’-C-l -}-(-l f.l [ z]_

253 i‘-u.] Ez

g Ze X

-y A ..’EV ’Yv

has the property that any pair of distinct rows 1A and zj satisfy

1y = e

We note that the matrices
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1. 1 o} . 3 2 . B}t . o o o o
.1 o 1 4{ 2 2 0 o . 0 2 1
1 . 1 { © z 2 o B I 2

1 ¢ 1 0 Z oz {z 1 .2
I & 1 2 0 2 1 2z o 1 .

a 0 0o 0 0 6 0o o 0 o

¢ o 0 0 0 0 ©0 O
12 . 2 1 Z © o 1
and T 2 2 1 ..o 1 2 @
0o o 2 0 1 FE |
1 I 1 2 & 1 o 2

fulfil the requirements for the matrix X for wv=5,6. Hence the

corresponding matrices Y are GBRD(v,A,lB;zﬁ) for +=5,6.

THEOREM 7.3.2. Let ¥ = {8,17,22,23,24,27,32,33,34}. Then
GBRD(v,4,18;Z.) exist for all v = 5 execept possibly for v e V.

Froof. We first prove the result for 5 € v £ 130.. Theoren 7.1.2 gilves
GBRD(V,&,G;ZG) for v=7,9,...,16,18,20. So GBRD{(v,4,18;Z.) exist

for these v, Lemma 7.3.1 glves the designs for v = 5 and 6.
Finally, by Theorem 4,1.1, there exists a GBRD(lQ,A,Z;Zz), and hence

by Theorem 1.1.1 (i1ii) a GBRD{19,4,18;Z2 Thus the designs exist for

. . 6). . . .
all v el = {v|5 2 v <20, v #8,17}. So Theorem 1.2,13, with v, =3,

§=1{5,7,9,11,12,13,16,19,20} and K = L, gives, by Corollary 1.1.2, a
GBRD(V,A,IB;ZG) whenever v = 58+k, k £ 8, ke K and s e §;

an application of the same theorem with v =6 and § replaced by
S' = 8%{5,20}1 gives GBRD(V,4,18;26) whenaver v = bs+k, k £ 5, k ¢ K,

eand s £ 8'. Therefore, to prove the theorem for 5 < v < 130, it is

sufficient to construct GBRD(V,&,IS;Zﬁ) for

ve{117,80,68,58,57,50,55,53,46,45,54,43,38,37,36,35,31,30,29,28,26,25,21%
But 43,37,31, and 25 are prime powers congruent to 1{mod 6) ; so the
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design may be cbtained from the GBRD(V,Q,Z;ZZJ. For

ve {117,80,55,45,36,35,30}, there exist s, £t £ K such that v=st,

Also, 57 = 7(9-1)+1, 56 = 11(6-1)+1, 53 = 13(5-1)+1, 46 = 9(6-1)+1,
29 = 7{5-1)+1, 26 = 5(6-1)+1, and 21 = 5(5-1)+1. So Theorem 1l.1.3

applies with w = L.

By Lemma 1.3.6, there exists a PBD{7,9,10,..,15},v,3) for
v = 68,58. By Lemma 1.3.5, there exists a PBD{{11,12},v,3), v = 39,44;
by Example 1.3.10, there exists a PBD({7,12},28,3). So, using the
designs provided by Theorem 7.1.2, and applying Corellary 1.l.Z, we
find that there exist GBRD(V,4,18;26) for v = 68,58,44,39, and 28.

Finally we construct a PBD({5,6,7},38) and hence a
GBRD(38,4,18;26). Select three distinct non—-collinear points in 3

separate groups of a TD(8,7). Discard the remaining peints of those

groups. The resulting design is the required design.

Now we have just proved that GBRD(V,4,18;26) exists for all

130
5S .

i.2.16 and Corollary 1.1.2, designs exist for all v 2= 130,

v e {56,7,9,10,11,12,13,14,15,16,18,19,20,28} v So, by Lemma

7.4 The group Z wicth t = 1,
—f

THEOREM 7.4.1. Let t > 1. There erist GBRD(v,A,6t;26) for all

v =5, t>1, except possibly when:

1) t =3 and v = 8,17,22,23,24,27,32,33, or 34,
1) t=5 and v = 8,17,24,27,32,33, or 34,
iii) t =7 and v = 8,17,32,33, or 34.

Proof. The result for t = 2, and hence for t even, is given by
Theorem 7.2.3. The result for t = 3 is given by Theorem 7.3.2, How
SRIBD(23,11,5) and SBIBD(27,14,7) exist; so a PBD{({10,11},v,5)
exists for v = 22 and 23 and a PBB({%,10,11,12,13,14},v,7) exists
for v = 22,23,24, and 27. HNow Theorem 7.1.1 gives GBRD(V,4,6;26J
for v ¢ {9,10,11,12,13,14}; so, by Corollary 1.1.2, GBRD{V,&,ﬁt;ZS)

exist for v = 22 and 23 when 't = 5 and for v = 22,23,24, and 27
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when t = 7.

We now consider the case t = 9. A GBRD(V,A,G;ZZ) 15 given
by Theorem 4.3.4 for all v 2 5 except for v = 28,34, end 39.
Applying Corollary 1l.1.1 {(iii), there exists a GBRD(V,&,Q,G;ZG} for

all v = 5 except possibly for v = 28,34, and 3%9. By Example 1.3.10,
there exists a PBD({7,12},28,3) and 2 PBD({6,7,14,15},34,3), and
by Lemma 1.3.5 there exists a PBD({9,10,11,12},39,3). Sa, by
Corollary 1.1.2, noting the existence of GBRD(V,4,3,6;Z6) for

v =6,7,9,10,11,12,14,15, there exist GBRD(v,4, 9.6;26) for all

v

v 5. Finally, using the designs for t = 2 gives the resulec for

t > 9 odd.

8. The Group FA(12).

8.1 The group ZZXZZXZB with X = 12,

THEOREM 8.1.1, fThere exist CBRD(v,4,12;BA(12)) Jfor qll v z 4,
v = 0,1 (mod 4).

Proof. By Theorem 2.2, there exists a GBRD(4,4,12;EA{12)). By
Lemma 5.1.4, there exist GBRD(V,&,3;Z3) for v = 8§ and 12, By

Theorem 5.1.5, there exists a GBRD(V,4,3;23) for v = 5 and 9. Hence,

by Theorem 1.1.1 (ii), there exist GBRD(v,4,12;EA(12)) for
v = 5,8,9,12. Applying Hanani's theorem cited in Corollary 1.1.2 (i}

gives the result.

G

There are more structured designs when v = 1 (mod 4) 1is a

prime power.

THEOREM 8,1,2. Let q = 4p+l be g prime power. Then there
exist GSDS(q,4,12;EA(12)).

Froof, Use sets (1 = 0,1,...,p-1)
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i pHl 2p+i IpH i pHi 2pH 3pH
®o0°%40 %00 *%a0 > Fgeo*10 Xo1 oF1
i pH 2pH  3pH i pHl 2p+i 3pHi
xge%g X351 F1o 0+ [EggoXyy X3 ¥y )
A
8.2. The group szZZXZ3 with A = 24,
THEQREM 8.2,1, If v = &, then aq GBRD(V,A,Z&;ZZXZZXZ3) eriats.
Progf. We have already constructed a GBRD(&,A,IZ;Zszzxz3). Take
two copies of that design. HNow we have the existence of
CBRD(V,A,&;ZE) for all v 2 5; using a GH(A:ZZNZZ) and Theorem
1.1.2 (iii), we have the complete result.
0

8.3 The group 22x22X23 with & = 36.

THEOREM 8.3.1. There extests @ OGBRD{v,4,36;RA(12)) for all v 2 4.

Froof., By Coreollary 1.1.2 (il}, it is sufficient to exhibit designs
for v e K42= {4,5,6,7,8,9,10,11,12,14,15,18,19,22,23}. By Theorem

8.1.1, GBRD{v,4,12;EA{12)) exist for v = 0,1(mod 4), 5 £ v £ 23;
by Theorem 2.2, there exists a design for v = 4. We give cyclically

generated designs in Table 6 (Appendix) for all v ¢ K42 axcept

for v = 22. But 22 = 7{4-1)+1; so, by Theorem 1.1.3, the design

on 22 points alseo exists.

The construction for v = 23 generalises to give the more

structured designs for g = 5 an odd prime power,

THEOREM 8.3.2. Let q = 5 be an odd prime power. Then there exists a
GSDS(q,4,36;ZZXZ2xz3).

FProof, Let g tbe a genetator of CF{qg); then the sets

( i i i+1 _ i+l) ¢ i _ i i+1 _ i+l} where

Boe? BouBiy TEie 0 BperTBuer8yy, TRy /o

i= 0,1,...,253- and {(u,w) e {{b,ab), (ab,a), (a.b}}, comprise
CSD5(q,4,363EA(12)). 0
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Finally, we combine Theorems 8.2.1 and 8.3.1. to produce

THEOREM 8.3.3. There exists ¢ GBRD(v,4,12t,EA{12)) for all
t>1, v =4,

Proof., Let t > 1; then there exist a,b € N such that t = Za+3b.
Take g coples of a desipgn with t = 2 and b copies of a design

with t = 3. This gives the required design.

9., The group Z_xZ_XZ P

57%5%25 » P > 0.

The necessary conditions reduce to:

(i) v oz 4

(i) sl .

We have already dealt with v = 4 (see §2).

9.1 23x23X22 with X = 18,

LEMMA 9.1.1. 4 GBRD(v,4,18;Z,%Z,2,) existe whensver a GBRD(v,4,2;2,)

extats.

Proof. Use the GH(9:Z X23) in Theorem 1.1.2 {(iii).

3

9.2 ZBXZ3X22 with & = 36.

LEMMA 9.2.1. fThere exist GBRD{v,4,36;EA{18)) for 4 £ v £ 25 axcept

possibly for v = 6 or 23.

Froof. By Lemma 7.1.2, there exist GBRD(V,4,6;26) for
v =7,9,10,...,16,18,20; there alsc exists a GH(A;ZE). So one may

apply Theorem 1.1.1 (iii) cto obtain the desipns for these v. Similarly,
by Theorem 4.1.1,.the designs exist for v 2 1 (mod 6} a prime
power; by Lemma 5.1.4 and Theorem 5.1,5, they exlst for
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v = 5,8, and 17. The design on 4 points is obtained from
GH(A;ZZ) and GH(9;23X23). 0

LEMMA 9.2.2. Let V = {6,23,26,27,30,38,42,47}. Then
B(via sv <22, v46,21)) sivivz4 and v ¢ V]

Proof. As a corollary to Theorem 6.5.2, one obtains
{v|4 = v =104, v §V}cB({v]s <v<20,v¢6D (*)

We now apply Theorem 1.2,14 with v, = 4, t = 125,

Ke={vlé =v =22, v#6} and 8§ = {v|v = +1(mod 6), v # 47} u {45}.

By (*), a PBD({v]4 = v <20, v # 6},v) exists for all v e 255104;

so they exist for all v = 104 except possibly for v € U (as defined
in Theorem 1.2.14). Now, by Remark 1.2.15, for all w = 104 there

exists 2 t ¢ 253 and an f, 4 < f < 20, such that v = v_t+f; so,

if veU, then f=6. How, if t = -1 (med ), then t-4 ¢ § and
v = 4(t~4)+22; dif t = l(mod 6}, t > 25, t # 49, then t-2 g §
and v = 4(t-2)+14. Finally, when t = 25,45, or 49, v = 106, 194, or
202, and suitable PBDs may be obtained by removing rows from a
TD{11,19), TD(10,1%), or a TD{10,11).

d
THEOREM 9.2.3. A GBRD{v,4,18t;EA(18)) existe for t > 1 and vz 5
exaept possibly when

(i) t =2 and v =6,23,26,27,30,38,42, or 47,

(ii} t=3 or 7 and v = 28,34, or 39,

(ii1) t =5 and v = 6,23,26,27,28,30,34,38,39, 42, or 47.

FProof. Suppose t = 2, By Lemma 9.2.1, there exists a
GBRD(v,4,36EA(IB)) for 211 v e {vlé £ v 22, v# 6} So, by
Lemma 9.2.2, these designs exist for 211 v = 5 except possibly for

v e {6,23,26,27,30,38,42,47}. Kow suppose that t is even and
t = 4. TFirst suppose t = 4. By Thecrem 5.2.2, there exist
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GBRD(V,&,6;23) for all v = 4. There also exists a GBRD(A,A,IZ;ZS);

so one may apply Thecorem 1.1.1 (ii) to obtain the result for
t =4, vz4, Now suppose t = 6, Assuming for the moment that the
result for t = 3 4is true, one obtaims designs for all v, 4 = v < 28.

So designs exist for all v ¢ sz and hence for all v = 4. The
result for t = 4 now gives all the designs for t even, t = 8.

Now we prove the result for t odd. Suppose t = 3. By
Theorem 4.3.3, there exist GBRD(V,4,6;22) for all v 2 5 except

possibly for v = 28,34, or 39, Using GBRB(&,&,9;23X23) in Theorem

1.1.1 (1ii} gives the result for t = 3. The results for t = 5 and ¥
follow from that for t =3 and t even. Now consider t = 9. By

Lemma 4.4.2, a GBRD(V,&,IS;ZZ) exists for v = 5. Now use the
GH(9;Z3X23) in Theorem 1.1,1 (14i1). Finally suppose ¢t = l1. Using

the designs with t = 3 and those with t = 8, one has designs for
t =11 and v 2 5 except when w = 28,34,39,44, or 58. But designs
exlst wher t =9 or 2 and v = 28,34,39,44, or 58; so designs exist
for t = 11 and for all v =z 5. Using these results and that for «

even, t > 2, one has the result for ¢ odd, t > 11,

10, The existence of GBRD{v,4,t|G|:G) with t > 1.

Let reN apd define the function p:iN-¥xK by pi(n) = (r,s} where
r
2" 1s the greatest power of 2 d¢ividing n and 3° is the greatest

power of 3 dividing n. We prove the following resulr,

THEOREM 10.1. Let t > 1 and G ke the elementary abelian group of

order 1¢|; let & =t|G| and v > 4. Fhen the nevessary conditions

30 (mod |G| ,

Aw=1) = 0 (mod 3% ,
Av(v-1) = O (mod 127 ,
|G| 2 2 (mod 4), v =4 => t {8 even,

are sufficlent for the ewistence of u GBRD(v,4,t|G|;0) except possibly
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when p(|G}) = (r,s) and

(1) r=0,8=2,t=2 and v =6,18,23,26,27,38,42,47,
(ii) s=0,r=1,t=3 and v ; 28,34,39,

(11i1) s=0,r=1, t =57 and v = 28,34,

(iv) s=0, r=2,t=3 and v = 15,23,

{v) g =1, =1,

8,17,22,23,24,27,32,33,34,

-
el
r
"
[or
£
<
u

= B§,17,24,27,32,33,34,

b
Vo
i
I
L
IS
=
I

]

N e=7 and v 8,17,32,33,34,
(vi} g =2, r=1,

6,23,26,27,30,38,42,47,

1) t=2 and v
2y t =3 or 7 and v = 28,34,39,
N t=5 and v = 6,23,26,27,28,30,34,38,39,42,47,

(vil) s=2, =2, t=3 and v = 15,23,

I

{(viii) s =23, r=1, t = 3,5,7, and v = 34.

Proof. Because of the exlstence of GBRD(4,4,h;EA(h}) _for

h = z1{mod 6), we need only prove the result for h = 2"3°%, The
exceptions for r=0 or for s=0 are simply these given in Theorems
6.6.2 and 5.8.1. The exceptions for s=1 and rél are those given in
Theorem 7.4.1, while those in the case s=2, r=1 are given in

Theorem 9,2.3.

Now suppose that s=1. We show that the conditions are
sufficient when r 2 2, The result is true for r=2 by Theorem §.3.3,
and hence the result holds for r 2 4. Using Theorem 1.1.1 (iii) the
result follows, for r=3 and t even, from Theorem 7.4.1. ¥Now for
t = 3 one cbtains the required designs from Theorem 4.3.1 for all
v = 5 except for v = 28,34,39, But by Theorem 2.2. the design exists
for v = 4 and hence for v = 4x7, 11{4-1)+1l. Finally removing three
rows from a TD(6,7) gives a PBD({4,5,6,7},39) which can be combined

with the designs just obtained for v = 4,...,7 completing the result
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for r =3, t=3. The result for t 2z 3, t odd, now follows from
the result for t even., And finally the result for =s=1, r z 2,

follows, by Theorem 1.1.1 (iii), from the cases r=2 and T1=3.

Now suppose that s=2, We shoﬁ that the theorem is true for
r = 3, The designs for r =3 and t even exist by Theorem 5.8.1
and Theorem 1.1.1 {ii{i}., The designs for r > 3 and t = 3 can be
constructed from those given In Theorem 5.8.1 for all v 2 5 except
v=28,34,39. But by Theorem 2.2 the design on four points exists and
the sufficiency of the necessary conditions in the case s5=2, v =z 3,
now follows by an argument identical to that given in the previous

paragraph,

Now suppose s5=r=2. The result for t even follows from

Theorem 53.8.1. The result for t odd follows from Theorem 6.6.1.

Sufficiency when s 2 3 and r z 2 follows from that for
s=1 and r = 2. Finally the case r=1 follows from Theorems 7.4.1

and 9.2.3.

0
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
31
32
33

34
36
56
79
“81
116

36
40

56
60
64

72

80

86
i04

128
132

136
144
224
316
324
464

Use

Use

Use
Use

Use

Use

Use

Remove a row of the BIBD(26+2

Use

Use

Use
Use
Use

Use

a

a

a

a

a

APPENDIX
Table 1
Lonstruction

TD¢7,5) to form a PBD(36,{8,51).
TD{8,5).

TD(11,5) to form a2 PBDL{5,12},56].
TD(12,5) to form a PBD[{5,12},601.
BIBD(64,8,1). (8 is a prime power}.

Th{9,8) to form a PBD[{9,8}, 72].
TD(16,5).

.2,

TD{13,8).

TD{16,8).

T™(17,8).
TD(16,9).
TD(25,%9}. Remove one row and add 9 columns.

TD{25,13). Remove 9 rows from one group and complete.

Similar to 316 cnly remove 1 row.

Use

a

TD(29,186). u
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199

Table 2

Construction

SBIBD(3° + 3+1,4,1)

BIED(4%,4,1)

BIBD(25,4,1)
BIBD(28,4,1)
PED[{4,101},31]

BIBD{37,4,1)
BIBD(40,4,1)

3%x15+1 get a GDD on 15 points with k=4 from

3%x27+1 get a CDD on 27 points with k=4 from
3x28+1 wuse BIBD(28,4,1) as a GDD on Eroups
3%48+1 wuse BIBD(49,4,1) as a GDD on groups

289

BIBD(16,4,1)

BIBD{28,4,1}
of size 1.

of gize 1,



‘Table 3

GBRD(V,4,6;23)
Number of Construction: develop the initial blocks indicsated
treatments ) ]
& see text;
®5 (00 0’ 1,4) twice (mod 5,23};
6 see text
*7 (00!1033]_;41)9 {00511)20361): (00’11’30;51) (mod 7323);
*8 {m,00,11,32) twice, {0 0 10 22 50) twice (mod 7,23);
*9 (05 Lgr20037)5 0051 54,5500, (04515,34,6,)
(O 0,2,6) (monZ),
* oo =
10 (0001132505 (=,00,31,1,) 4 (05,10,40,5,) ,(00,10,3,,6,),
(00, 0 0,6 ) (mod 9,2 ),
11 11 = 1 (mod 10});
*12 (=,01,1152)5 (=,04:2,1,), (00,10,5,,7,), (05,14,44,7,)5
(00: 0* 0!8 7, (O 22 40,81) {mod 11;23);
*14 (=2,0051152,%, (=,00,2,,1,), (04,14,5,,60)5 (0452.44,8,),
(05215515105}, €04,2,,60,9.), (05,3,,6,,10,) (mod 13,2,
*
15 (0g1624531)5€00,1 220,110, (00, 1,,6,,8),0,2,,5,.9.)
(00 2 l,11 ) (00,3 2’102)’(00 2,10 Y{mod 15,2 )
*18 (=,00111:2,) 4 (=,00,2,,4,) 1 (04.31,7,,110),€0,,3,.7,,12,),
(Ogs1gs2025,7 5 (05315,7,,10,), (05, 1,,5,,110)
(00 20 0,10 ) (00 22,81,111 ) (mod 17.23);
i9,22 = 6(4-1).+ 1; 22 = 7(4-1) + 1
23 (557454 >51 a=57 T, 1 = 0,1,...,10 (mod 23,2,).
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Table 4
GBRD{(v,4,6;2,)

10

11

12

13

14

15

16

17

18

19

{0.,1

D’

0!

no cyelic solution found

(00,1

(mad 9,26)

(= .0

m(}’ o

(00,1

(Q.,1

0’
(04,2

{=_,0

WO'

304,00 (0051153005,)5 (0451552035) (mod 7,2)

021233750005 15585,5,),€0,,1,,3,06,3,(00,2,,4,,6,)

3’

09

3!

0’11’

’11’

7o) (m5003,2,,66), (00, 1,,3,,7,) (0,

43,52) (mod 9,26)

50,82)(mod 11,26)

32}’(mol03!3("75}’(00!14’23!74) :(00!

(00,10,22,80), (00,13,33,62) {med 11,26)

0.,1

09

0°?%1

307> 0gs 1502659, (00,1,55,,8,), (0,

(00,23,63,95), (00,24,5 9.} {(med 13,26)

372

10,22,42

2,300 5 (0010557305 (0gs1554,55,)5(04,2,,40,75

285074

22,50,81

) L)

Y

)!

)l

(WO’OO’II’BQ)’(w0’03’34’125)’(00’24’52’93)’(00’1[}'22'60)’

(0,1

O;

(04,1

;55

3’75

0!21!
(052,564,100, (04,37

85)’ (00’15 5772 0’73732

+3:.6.), (0.,2,,6,,8,) (mod 13,26)

35)5(0451,5.25,64),(05,1,,6 8)1(04524,5,510,),

4! 4)

1)

11,), (00,32,61,123) (mod 15,Z.)

(20041115350 5 (=0503,3,, 14504 (052,565, 115) 5005 3,,65,105)

0,.,1

2

0’ 3:50)’(00,12960’82)’ (00’15’61’81>’ {0

{mod 15,26)

(WOS
(04-1

(0,2

4]

5’61'

111) {mod 17, Z.)

6
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0°25°75°

92) k]

00.11,32),(m0,03,34.165).(00,24.62.103),(00,3&.71,122).

27408005 (0451552,,16,), (04:20,7,,10))5 (0g: 25,5511,



20

(730ge 1535 <w0,03,34,18 ) (0O 2161°10,0,(04,3,,8,, 145,

0,22,52,120), (0_,

9019935213005 €0g5 14,345,750,
13,) (mod 19, Z,)

(0 6

0’ 5 5’

Table 5
GBRD(V,Q,IZ;ZS)

10

0 0
0 P
3 1
3 3

= e O

a
3
4
2

£~ M O

Q
4
5
a

L L =
=N W D

0
2
4
5

woo o= o

o
1
5
P

=T e R e S o

(m’l3’21!04)’( 1 o 594 Y,(=,1 1;04))(w’ 3? 35 42),

(1 14g) s (1ge2,3,5%,) (mod 5,7 ¥i

0’ 1’

(2405510» 37 5 (230452503504 (2,0153,54,)5 (=,0,,41,3.),

3’7375 17472

(13 60, 2 & ) (33 40 32442 ) (63 0,41,

{(mod ?,26); or

3105 (855305352

}
(m’oo’ll’az)’( 0 0’ 4 35) (=, 3,11’35)’(m,03’14,32>,

(0gs1425550) 2 (0gs14525554), (05,1452

{mod ?,26);

523372 (0g:14,25,34)

1215305 (2,0,,1,,20) 1 (=,05,2,,3,)

(e 0 O 3) = 0 5272’ 2

(00 3 42,5 ) twice, (0D 4 34 64) twice, (0 2, l’

{mod 9,Z, ):

6 1 twice

from GBRD(12,4,3;23) and GH(&,ZE)
( ’02 20’?2) ( 9 1s? ):(myo 4) ( ] 4’ 4 )7

(Og>1g239299>» (00 033 o'l 0°11230775

(0g>15531,94)5(05515,3,,9,), (0 4,a 9,05 (041,135,900

(0grl5s3159,)s (0)515,3,,9)) (mod 13,233

19335 (0 19,0, (0 9.),
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GBRD(v,4,36;EA(L2))

for v ¢ ¥

Table 6

[

2 with v = 2, 3 (mod 4)

10

11l

14

15

(lle’ZOe’BOe

(=0

2
O0e’ Du’' 2e’ 2w

where

(0
(¢

where (u,w)

( i
(m
(0

0, .2

OE’IDe’Ble’

3

Oe'loe’Blu’ﬁle

oe* u 20w B1uw

) 3 times, (l

)

)

s (=

»(0

),(ooe,

Qe’

De,

¥

3

Ow’lle’alu
{u,w) e {(b,ab),(ab,a),(a,b)}

Ou 3lw luw

1

is as above.

22

“0e*C0e’ 1122y

De’oou’31w’12uw

1€

Ge*"0u’ an luw

(OOE’IOe’2

(009’12u’51w

(0,2

57

uw

}

)!

s (=g
3, (0

e’ Qu’

Oe’

0

L

Lour*

1

Oe’ 0

u!

lu’BOe)’(OOE’lDu’Zlu’
©

u’

0e? 220 0u? 72w’ » Qe 224
Y, (nod 11), (u,w)

(OOe 20u 50&
(m

(oo

(OOE’ Ou lw

(0 »3

Oe’ lu 1w’

(0, ,3_,6

Qe

6. ,1_ ,2

0u’ 2e’

Ze

2

10

10

3

0&’00&’11u’ Zu

Oe'OOu'zlw’12uw
Yy (90

),
)l

2u

1w

O0e’"0e’* " 0u’" le

(e, ,1

{0, ,2, ,5

2, .6

(DDe’ 2u* 1w’

(0. ,3, ,7

De

1u’ 2w’

11

Oe? lu’ZOW’BOuw

luw
lolw)’

)
)

s (=

Oe’ Ou'llw’22uw

e?200*80u) » (0

, €0 Oe’ On

e’

(ODe

(0

)!(Ooe!

)l

)

(0

o

Oe’

3

1y

1

Oe’

Ou’

2

3

* (UGE’

(OOe

3

u

te’?2¢°72¢7%0e) * (Ope 22y

3

33

u’"0e’ le

1. ,2

1w? " 2uw

3

3

le

’AOW’

W

e’ﬁae’

&

0e’ " 0u’ 2u’

3

2
PO Tluw

b

u’ 2w Ou

5

0u’62e

’72e
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5

Oe’ Gu’ D 3 2u

lw’61uw)’(002’20u’40e’
), {mod 9), (u,w)

Ow

2uw

Ow’ lu w) (OOe’zle le’

91e)’(00e‘22u’b0w’gluw

Gu 0w’ luw Ge’OOE’llu’ﬁlw

P IS 1 )

)’(Woe’ ou 2250 30 } (mod 5)

)s (0 le 2Ge’ﬁlu)'

}’(ODe’llu’30w’ }, (mod 7)

luw

33 (0500073 1e 1oe)

) (OOe Ou’ 4Oe 52w)’

6le)’

as before.
) H] (Ooe, lzel sle, 70e) »

) (0 Ou 41w 52uw)

7200622047 30w? e’ >

as before.

)3 (200500,72 1001507

le’ " 2e

Oe’yOu’SOw’60uw>’

10 )

Qe

),

101w), {med 13), {u,w) as before.

8

2w’90uw

35005015 5200115 0

)’(DOe’12u 62w’80uw}

)+ (002256102111

10, 3,005 530, 65,510, ) s

Ulw),(mcd 1%),(u,w} as before.



v=18 (WOe’OOe’llu’ZZu)' (MOE’OOu’Ilw'ZZUW)’ (moe’OOu’zle'QZe)’

“0e%0ur 21w *2u0w’ * Ce 17202 Mou? > Cper?1u772w2 e
(OOE’Slu'71" )’ (0 l 'le’IZZUW)’ (GOE’loe'ZOU’SZE)'
(OOe’lou’zlw’52uw}’ (GOE’IZe’70e’10 )s (0 2u’70w’102uw)’
(OOe'12u’52w )’ (0 2u’52w 1]'Ouw)’ (OOe ’50e IOOU)’
Oge*20u> 30w Uuw)' Oger2zer81er 1) Oper 220810 )

(mod 17), (u,w) as before.

i i i+l i+] i i+] i+1
5 5 s“sle ) (SUE’ 50 :5 ’_SIW )) i= 0!19--'s10

= 3 -
v 3 (Soe’ Ou’"1u
and {u,w) as before,
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