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We consider the set of ordered partitions of » into 7 parts acted upon by the
eyclic permutation (12..sm). The resuiting family of orbits $(n, m) is shown to
have cardinality p(n, m) = (1in) Ty #(d) (%), where ¢ is Euler’s ¢function.
Pin, m) is shown to be set-isomorphic to the family of orbits F(x, m) of the set of
ail m-subsets of an n-set acted upen by the cyclic permutation (12...n). This iso-
morphism yields an efficient method for determining the complete weight enum-
erator of any code generated by a circulant matrix.

1. INTRODUCTION

An ordered partition {or composition, cf. [2] or m-compesition, cf. [1])
of n into m parts is an ordered m-tuple « = (k, , &4 ,..., k), where the k;
are positive integers and k, + k, + - + k,, = n. In this paper we consider
the set #(n, m) of all ordered partitions of n into m parts acted upon by the
cyclic permutation

=12 m.
The action of group G generated by # is defined by

90{ = (klg s k?ﬂ aeery kmﬂ)
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and we write #(n, m) for the set of orbits of G under this action. The cardinali-
ties of P(n, m) and P(n, m) will be denoted by p(n, m) and p(n, m), respec-
tively. Writing pu(n, m) for the number of orbits in &(n, m) having exactly
d-elements, we derive in Section 3 the identities

patn ) =3 T ) (1) (0
and
P m) =1 3 d(a) (14, (1)
| r '

where j is the Mdbius function, ¢ is Euler's ¢-function, and (%) is defined
to be zero unless 4 is a divisor of both # and m.

The initial reason for our interest in the set 2(n, m) is due to the fundamen-
tal relationship between F(n, m) and the set of all m-subsets of a given
n-set. Write § for the set of integers {1, 2,..., n} and % (s, m) for the set of all
m-subsets of S. Let H be the cyclic group generated by the permutation

b= (12 - n).

For ! = {o;, ay,..., o}, any element of ¥(n, m), we define the action of H en
%(n, m) by

Pl = {ogh, agifrnns amfl), {1.3)

af = o, 21 {modulo n).

The set %(n, m) of orbits of H is shown in Section 2 to be set-isomorphic to
P(n, m), and the properties of the isomorphism are studied in some detail.

The isomorphism between %(n, m} and P(n, m) yields an efficient method
for determining the complete weight enumerator of any code generated by
the row vectors of a circulant matrix or a matrix of the form [7H], where [ is
the # » nidentity matrix and Wisann x ncirculant matrix, This application
is discussed in Section 4.

2. THE RELATIONSHIP BETWEEN ORDERED PARTITIONS AND #-SETS

The purpose of this section is to establish the fundamental relationship
between the two sets Z(n, m) and %(n, m}). We will denote the cardinatities of
%(n, i1} and 6(n, m) by c(n, m) and &(n, m), respectively. The number of
orbits in Z{n, m) with d elements will be denoted by &,{n, m).
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Each m-subset of § has a natural ordering. Let = {o , 03 ..., oy}, where
Qy < oy < v < o, . Associated with 7 we have the ordered partition of »

into m parts
oll) = (dy, dy s dip) 2.0
defined by
d; = a0 — for i=1,.,m—1,

ey = 0 — o — 0 -

Also, with each ordered partition « = (k,, &k, ,..., k) we associate the
m-set

Koy = {1, 1 4+ ky oy b A kg 4 kg + o F kgt (22)

We prove next that (2.1} and (2.2) yield a bijection between the sets P(n, n1)
and €(n, m).

Lemma 2.1.  The ordered partitions associated with a class in €(n, m) are
comtained in a class in P(n, m).

Proof. Let ! = {o;, ay,..., %}, where oy << oy < '+ << oy 2 11, and let
all) = (d,, d. ..., d,,) be defined by (2.1). Then

lﬁk[ == {0:]_ + k\ Xy + k!"'a Fry + k}!
where the elements are reduced modulo n. In natural order
,\Lk[ = {at _-'_ k! D:t+‘1 _:_ kr-w X + k-: &) k.,..., [ | _:' k}'}

for some integer 1. Hence the ordered partition associated with %/ is

C‘('ptl) = (di LERRE] d‘m—l v Dy 7 Dy, dl ERRRE] d!—! s H — oy — k + &y + k)'

But
0y =~ oy = dpy (mod n)
and
n— oy — k + oy <+ k = df—l (l'l‘l()d H),
and so

okl = 8-2a(l), 2.3

which proves the assertion of the lemma.
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LemMa 2.2. The m-sets associated with a class in Pn, m) are contained
in a class in @(n, m). In particular

i(Fx) = t,(xb‘l(a) (2.4
Jori=0,1,..,m— 1, where b, =k, 1, + kg + - + km .
Proof. By definition
'rl’bq(“) = {l + bi ! 1 4 b;’ + k1 yrees i + bi + k1 =+ 4 km—-l}'

Since

il

14+b;+k++k=1 (modn)

we have in natural order

‘;(‘bq(fx) = {1, L 4+ kl'+1 ey 1 A k£+1 R o km—l , 1+ kz‘+1 + ok,
Dbk o+ o Ak ke, U gy + ok + l 4
+ ki)
— I(fia).

THEOREM 2.1. Define f: P{n, m) — €(n, m) by
fla] = )] (2.5)
and define
g: €, m) — F(n, m)
by
gla] = [(D); (2.6)

where the representative I contains 1.
Then f and g are well defined andfog =1, gof = 1.

Proof. fis well defined by Lemma 2.2 and g is well defined by Lemma 2.1;
hence it suffices to prove that f and g are mutual inverses.

Let 7 = {o; , % ,..., %} 20d write [{] for the corresponding class in @(n, m).
Then for oI} = {d, , d; ,..., d.,) defined by (2.1} we have that

Iy = 8

hence [l(a(N)] = [[and so fe g = 1.
On the other hand, let « = (k, , k3 ,..., &,). Then by (2.2)

f(m) = {1, 1 + k]_ yeney 1+ k; + o+ km—l}
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and by (2.1)
0f'('l(c‘)) = (dl ¥ dz ==y dm)s
where
d=tti-l=k, da=1+k +hkyg—1—ky=kp,, @y = km_y
and
dp=n—( 4kt F k) 1= K.

Hence
ol(a)) = o,
and so {a({(«))] = [«], which proves that g o f = 1. This completes the proof

of the theorem.
An immediate consequence of Theorem 2.1 is

Pn, m) = c(n, m). (2.7

The next theorem shows that the bijection f preserves, in a sense, the class
size.

- THEOREM 2.2. Let f be the mapping defined by Eq. (2.5) and suppose k

is a divisor of m. If [a} € P(n, m) is a class containing mjk elements then the
class f[a] contains nik elements.

Progf. Suppose [o] contains m/k elements. Then
o = (kl yroey kd 3 kl gerny kd o kl ymamry kd),
where d = mjk and each d-tuple (%, ,...,, k;) 1s an ordered partition of n/k
into myk parts whose class in P(njk, mfk) contains exactly m/k elements.

Write & = nfk. Then

I(ﬂ:) == {19 1 + kl}---’l +k1+ “'—;_kd_]_, 1 +h, | +h+k1,...,
1+ — DA+ ki + -+ k)

Hence ¢*{(x) = Ko, from which it follows that
fla] = [{(«)] contains A = nfk distinct elements.
COROLLARY. The following identity holds for k | (m, n),

Em’k(n: m) - ﬁm;’k(”s m)
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To each m-subset { of S there corresponds the (n — m)-subset S — /. This
correspondence defines a natural bijection between €(n, m) and €(n, n — m).
Moreover since

S—Pl=yS—dl=HS—-1)
the mapping
t: G(n, m) — €(n, n — m), (2.8)
defined by
tH] =[S — 1],
is well defined and is a bijection.

Incorporating the results of Theorem 2.1 we have the commutative
diagram

%(n, my ——— G(n,n — m)
1 0 : 2.9)
Pn, my —z> P, n — m)
where g = 10 /7 [0} — [«(S — Ha))].

Since f, ¢, and g are bijections we can conclude that g £ = fis also. Suppose
next that {{] is a class in €(n, m) with a/k elements; then if A = nfk we have

g =1

and consequently
S—I=85~Pi=4M5-1D.

This shows that classes with n/k elements in €(n, m) are in cne-one corre-
spondence with classes having n/k elements in G{(n, n — m).
Hence we have the following theorem,

THEOREM 2.3. The mapping g o t o f defined in (2.9) Is a bijection between
Pn, m) and P(n, n — m) which maps classes containing mfk elements to
classes containing (n — m)lk elements.

CoroLLARY. (1) &(n, m) = &(n, n — m),

(2) plr, m) = pln, n — m),
(3} Pmndn, M) = Pu_mynln, n — m).
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3. THE CARDINALITY OF P(n, m)

In this section we derive (1.1} and (1.2). Since p(n, m) can be interpreted
as the number of ways of inserting m — 1 commas into n — 1 places [2] we
have

p(n,m)z("_l)zﬂ(”). 3.1

m—1 n\m

Also, the cardinality of each orbit is a divisor of m. Hence we immediately
have the equations

2N = pln,m) = T dpdn.my (3.2)
and
pln,m) = Z Paln, m). (3.3)

d|m

Perhaps the most elegant way to obtain (1.1) is to observe that p{{n/m)k, k)
is defined for all positive integers &, if we let p({(nfm)k, k) == 0 whenever
(r/m)k is not an integer; i.e., we define {(*5"™) = 0 if nk/m is not an integer.
Moreover, py(n, m) is defined for all positive integers o, being equal to 0
whenever 4 is not a divisor of (n, m), the greatest common divisor of n and m.
With these observations, we may invert {3.2) to obtain

- noom  m
mpm(n, m) = 3 uwld)p (?1- il T]

dlm '

(3.4
Equation (1.1} is a trivial consequence of (3.1) and (3.4).

To obtain (1.2) we recall that &, the cyclic group of order m, acts on the set
#(n, m) of all ordered partitions of n into m parts, Let A{ g) denote the number
of elements of P(n, m)} fixed by the permutation g € G. If g = ¢, the identity
element, then

Mg) = (:1_—11 )

since e fixes every ordered partition. If g consists of d-cycles then g fixes only
those ordered partitions which are repeated copies of ordered partitions of
n{d into mfd parts. For example, (1, 3, 2, 1, 3, 2, 1, 3, 2) is fixed by (147)
(258)(369) = (123456789)*. But the number of permutations of G consisting -
of d-cycles is ¢{d). Hence by Burnside’s lemma

Bonm) = = ¥ 4@ (57 1) =3 T 4 ()

M Sm LT
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As an example suppose that n = 24 and m = 4. Then
B4, 4 = [0 () + 40 (5) + 69 ()]

- I+ (B 2] = e

The following corellaries may serve as further illustrations.?

CoroLLARY 1. If n and m are relatively prime then

P, m) = palmymy = L ("),

CoroLLary 2. If (n, m) = q is a prime then

"

)

n miq

)+

if (n,3) =1

it (1,3) =3,

it (1,4) =2

)

) |

) it (4 =1
)

)

if (n,4) = 4.

4. AN APPLICATION

Let ¥ be a linear code generated by the row vectors of a matrix [IW],
where 7 is n X n tdentity matrix and B is an # X »n circulant matrix with
entries in a finite field GF(g). Such codes have the property that they have
the same weight enumerators as their duals [4] and hence share many of the

Y Added in proof. The total number of ordered partition classes of # is f{n) =
T DUt ) = (1jn) Egpn $(d)2% — 1. We are grateful to Professor G. Baron of the

Technical University, Vienna, for this observation.
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properties of self-dual codes. The design properties of linear codes and their
subcodes of constant weight are closely related to their weight enumerators
[3]. In general the problem of determining the weight enumerator (WE) of a
code, or better still the complete weight enumerator (CWE), involves the
determination of the WE or CWE of each of the g* codewords. If W is
circulant and W, denotes the ith row of W then the linear combination

Wi+ We+ -+ W,
has the same CWE as
Ws._+:c T W£2+k + T Wim+k

for amy integer &, where the subscripts are reduced modulo n. Hence the
codewords of ¥ can be grouped into classes in which elements are “linear
shifts” of one another. For given m the family of classes is in obvious corre-
spondence with €(n, m). Hence the problem of determining the CWE of
% reduces to two problems:

(1) Finding a complete system of coset representatives of €(n, m) for
m=1,.n

(2} Determining the CWEs of the linear combinations corresponding
to the coset representatives.

The problem of finding a complete system of coset representatives is very
easy for P(n, m), where such a system occurs in Jexicographical order among
the set of all ordered partitions of n into m parts with the first entry at most
the integer part of n/m. An ordered partition in this class is a suitable repre-
sentative provided that it is lexicographically less than any ordered partition
in its orbit. An efficient computer algorithm exists to determine the com-
plete system of representatives for #(n, m).

‘We may note that in the case of binary codes Theorem 2.3 allows us to
reduce the calculation fime by a further factor of 2.
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