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Abstract

We verify the skew weighing matrix conjecture for
orders 2?7 », t = 3 a positive integer, byshowing that orthogonal
designs (1, k) exist for all k=0, 1, ...., 2%7 — 1 in order

ot7 .

We discuss the construction of orthogonal designs

using circulant matrices. In particular we construct designs in

orders 20 and 28 .

The weilghing matrix conjecture is verified for order

60 .



§1. Introduction.

An orthogonal design of order n and type

(ul, Ups woes uS) (ui>0) on the commuting variables

Xys Xy =ees X is an n Xn matrix A with entries from
{o, e ixs} such that
S
anl = Y (u,x2)I .
. i"i’™n
1=1

Alternatively, the rows of A are formally orthogonal and each

row has precisely U entries of the type ixi

In [2], where this was first defined and many examples
and properties of such designs were investigated, we mentioned
that

S
T, _ 2
A'A = .E: (uixi)In

i=1

and so our alternative description of A applies equally well
to the columns of A . We also showed in [2] that s = p(n) ,

where p(n) (Radon's function) is defined by

p(n) = 8c + 2d

when

n=2%"b, bodd, a=lc+d 0=<d<h.

A weighing matrix of weight k and order n , is a

square {0, 1, -1} matrix, A , of order n satisfying

AAT = kI .
n



In [2] we showed that the existence of an orthogonal
design of order n and type (ul, e us) is equivalent to the

existence of disjoint weighing matrices A AS , of order n ,

12 creo
where A, has weight u, and the matrices, {Ai}izl , satisfy the

matrix equation

XYT + YXT =0

in pairs. In particular, the existence of an orthogonal design
of order n and type (1, k) is equivalent to the existence of

a skew-symmetric weighing matrix of weight k and order n .
It is conjectured that:

(i) for n = 2 (mod 4) there is a weighing matrix
of weight k and order n for every
k <n - 1 which is the sum of two integer

squares;

0 (mod 4) there is a weighing matrix

(ii) for n

of weight k and order n for every k =n ;

(iii) for n = 4 (mod 8) there is a skew-symmetric
weighing matrix of order n for every k <n ,
except possibly k =n - 2 , where k is the
sum of =< three squares of integers (equivalently,
there is an orthogonal design of type (1, k) in
order n for every k <n , except possibly
k =n - 2 , which is the sum of " = three squares of

integers).



(iv) for n = 0 (mod 8) there is a skew-symmetric
weighing matrix of order n for every k <n
(equivalently there is an orthogonal design of

type (1, k) in order n for every k <mn) .

Conjecture (ii) above 1s an extension of the Hadamard
conjecture (i.e. for every n = 0 (mod 4) there is a {1, -1}
matrix, H , of order n satisfying HH = nIn) while (iv) and

0 (mod 4)

(iii) generalize the conjecture that for every n
there is a Hadamard matrix, H , of order n , with the property

that H = In + S where S = —ST .

Conjecture (ii) is established for
n € {4, 8, 12, ...., 32, u0, 60} , 2F, ottls, oftls Lttl; ,ttlg

for t a positive integer in [3], [5], [11], [12] and this paper.

Conjecture (iv) and consequently conjecture (il ) is

established for QFm, m€ {1, 3,5, 7, 3} , t =3 a positive integer
,‘/-—_.h-\"“‘“”‘w-ww“w

/ e e s e s T T S, h
in [2]1, [4], [10] and this paper. (Note that the phrase "except possibly

e i s e i .
_—

//k = n-2" is necessary because there is no design of type (1, 42) in

order 4.

Conjecture (iii) has been verified for n € {12, 20, 28}

in [5]. < —-

-

D. Shapiro, [10], and W. Wolfe, [15], have found powerful
algebraic non-existence theorems for orthogonal designs which supercede
those of Geramita, Geramita and Wallis [2]. In addition Geramita and
Verner [4] and P.J. Robinson [9] have found strong combinatorial

theorems. We quote those relevant to this paper.

\

/



THEOREM 1.  (Wolfe). ILet n =4 (mod 8) and (ai’ aj) be the
b
Hilbert Norm residue symbol. There exists an orthogonal design in

order T and type

. . I .
(1) (al, ays ags au) only if izlai 18 a square

and I (a., a.) =1 at every prime p ;
1siggsy v P

(ii) (al, ays a3) only 1f (-1, alazas) I (ai, aj) =1

P1=i<j=<3 p

at every prime D ;

(iii) (al, a2) only if a,a, 18 the sum of three

squares.

See Hall [8] for details of how to evaluate (ai, aj) .
p
There are similar results in orders n = 2(mod 4) , n = 8(mod 16)

and n =16(mod 32) . See Wolfe [1u].

THEOREM 2. (Geramita-Verner). If n =0 (mod 4) , then there exists

an orthogonal design in order n and df type (ul, cees us) where

S
z:ui =n -1 <f and only if there exists an orthogonal design in
i=1

order n and type (1, u . us) .

l’
Let R be the back diagonal matrix. Then an orthogonal

design or weighing matrix is said to be constructed from two circulant

matrices A and B if it is of the form



and to be of Goethals-Seidel type if it is of the form

A BR CR DR |
-BR A DR -C'R
T T
-CR -D'R A B'R
-DR  C'R  -B'R A

where A, B, C, D are circulant matrices.

In [11] methods are described for constructing orthogonal
designs by filling in circulant matrices in the design of type
(1, 1,1, 1,1, 1, 1, 1) in order 8 ., A design made in this way

is said to be constructed from 8 circulants,
We will also use the following result from [2]:

THEOREM 3.  (Geramita-Wallis). If there exists an orthogonal
design of type (s, t) 1in order n there exists an orthogonal

design of type (s, s, t, t) in order 2n .

§2. Comments on Constructions Using’Circu]ant Matrices.

Suppose X 1is the incidence matrix of an orthogonal

design of order n and type (s 30 su) in the variables

1> 5p0 B
X5 Ry Xgs X o Further suppose X is constructed using 4

circulant matrices Y Y,, Y in the Goethals-Seidel array.

1 Y2’ 37 "4

Suppose the row and column sum of Yi is

r. = a.x
1

+ b.x, + c.x,. + d.x
i1 i i

2 13 y 2



Let e be the 1 X n/4 matrix of 1's then

Now since X i1s an orthogonal design

Multiplying on the left by e and the right by eT we have

T+ 2 ¢ 2 3 T_ + T Lo
ee’ ) s.x.” =n/b ) s.x.° = ) (e¥.)(eY.) = ) (r,e)(r.e) =n/4)yr. .
. i7i . i7i . i i . i i . i

i=1 i=1 1=1 i=1 i=1
Thus we have
4 Y Yy
2 2 2 2 2 2 2 2 2 2
SiX T S,X, st oS x, = X Z:al + X, Z:bl +'x3 z:ci

L 4
+ 2xlx3.z:aici + 2Xlx4.§:aidi
1i=1 i=1

b b
+ 2X2X3.§:bici + 2x2xu.§:bidi
i=1 i=1

n
+ 2XSXH.Z:Cidi
i=1
Hence we have four integer vectors g = (al, ay, ag; au) » B = (bl, by, Dy, bu) )

< = (cl, Chs Cgo cu) » 4= (dl, d2, d3, du) which are pairwise

orthogonal. Also |%J2 = 8.5 IQJQ =855



Form these vectors into an orthogonal integer matrix M
T .
with M = [éT, p?, gﬁ, Qj] . Then MMT = dlag(sl, Sps Sg3» su) and

det M = /slszsss4 . But M 1is integer so S18,8,8, 1s a square.

Thus we have shown

LEMMA 4.  The Goethals-Seidel construction for an orthogonal design
of order n = O(mod 4) and type (sl, Sys Sg» su) can only be used if
1) There is an integer matrix M satisfying MMT = diag(sl, Sys Sgo Sq)

and hence

2) 88,848, 18 a square.

Since the ij th entry of M 1is the coefficient of X in
the row sum of Yi this lemma helps in the search for circulant

matrices to fit into the Goethals-Seidel array; see [1].

Note the relation between Lemma 4 and Theorem 1. Wolfe's
Theorem says (essentially) that if a design X of type (sl, Sys Sgo sq)
exists in order n = 4(mod 8) then there is a 4 X 4 rational matrix
Q such that QQT = diag(sl, Sy Sg» SA) . Lemma 4 says that if X

0(mod 4) then

1!

is constructed from 4 circulants, in any order n

Q can be chosen to be an integer matrix.

Similarly we may show:

s.) and

LEMMA 5.  An orthogonal design of type (sl, Sps »ees Sg

order n = 0(mod 8) can be constructed from eight circulants only if

1) there is an 8 x 8 <integer matrix M such that



T .
MM = dlag(sl, Spa vavs 88)

and hence

2) 815,558,5:5,5,85 18 a square.

LEMMA 6.  4n orthogonal design of type (s, t) and order

n = 0(mod 2) can be constructed from two circulant matrices only if

1) there is a 2 X 2 <integer matrix M such that
T _ ..
MM = diag(s, t)
and hence

2) st s a square.

Again, Lemma 5 and Lemma 6 are similar to Wolfe's

theorems in orders n = 8(mod 16) and n = 2(mod 4) .



§3. Some Results on the Conjectures.

LEMMA 7. ALl orthogonal designs (1, k), k=0, 1, ..., 55

exist in order 56 .

Proof. In [5] it is established that the orthogonal designs (1, k)
exist in order 56 for k # 46, 47 , 0 =k = 55 . It remains to
construct a (1, 46) and a (1, 47). For these we use the

(x, 1, 1,1, 1, 1, 1, 1) orthogonal design in order 8 and replace
the variables Xy by the circulant matrices Xi indicated below

and the variables xj by the back circulant matrices Xj indicated

below.

For (1, 46) use the matrices with first rows
(X2 backcirculant, the rest circulant)
Xl :x 0 0 0 0 0 O X5 Ty yV VoY -y vy
X, 0y yy 0y 00 Xg © ¥ YY-YV Yy ¥
X320 ¥V ¥V YV VY Xg 0 ¥y¥Y YV Y V¥
Xy 0 Yy ¥YY ¥V VY ¥ Xg 0 YV -y ¥ ¥-Y-¥
and for (1, 47) use the matrices with first rows (Xl circulant,
the rest backcirculant)
X, + 2y 0 y-y 0-y Xg 2 Y-y Y ¥ ¥-V-Y
X, 0y vy vyyy Xg 0 Yy V¥V ¥-¥
Xg 0 0 y-y ¥y ¥y-vy V¥ X0 ¥V ¥Y¥Y-YY-Y ¥

X, 0y ¥yy-y vy Xg 0 0y O-y-y 0 vy.



COROLLARY 8. ALl orthogonal designs (1, k), k = 0,1, vvesy 2571

exist in orders 207 , t =3 a positive integer.

Proof. We proceed by induction after first noting that the existence
of an orthogonal design of type (a, b) in order n implies the

existence of an orthogonal design of type (a, a, b, b) in order 2n

COROLLARY 9. A skew-symmetric weighing matrix, w(2?7, k),
exists for all k =0, 1, ..., 9%7-1 when t =3 isa positive

integer .

COROLLARY 10. A4 weighing matrix, W(2F7, k) , exists for all

k=0,1, ..., o7 when t =3 isa positive integer .

LEMMA 11. There exists a W(60, k) for all k=10, 1, ..., 60 .
All but W(60, §) for 5 € {19, 35, 38, 41, 43, u7, 50, 51, 53, 57}

are constructed from circulant matrices.

Proof. We have the enunciation from [6, lemma 16] except for the
W(60, 51) and W(60, 53) . It remains then to show these two

weighing matrices exist.

The W(60, 51) 1is found by replacing the variables of

the orthogonal design of type (2, 3, 6, 9) in order 20 by the

matrices

J= 1111} , B=(01-], K= 1011} , A=1[-11
111 1-0 101 1-1
111 -0 X 110 11-

respectively. The W(60, 53) is found by replacing the variables of
the orthogonal design of type (2, 5, 5, 8) in order 20 by the

matrices B, J, B and A respectively.



§4. Constructions Using Circulant Weighing Matrices.

It was shown in [14] that orthogonal designs of types
2 2 2 2 2 2 2 2 2 2
t, 1,1, 92, (1,1,9°,9), 1,9, 49,49), (@,4d,9,9),
(2q2, 2(q2+2q+2)) exist in order 4(q2+q+l) when q 1s a prime

power,

THEOREM 12. Let q be a prime power, Then there exist orthogonal
designs of types (i) (1, 3, 86, 2q2), (ii) (2, 2, 4, 4q2):

(iii) (2, 2, q2+1, o®+1), (iv) (3, 4, 6, 29°), (v) (3, 3, 3, 3q°),

(vi) (4, 4, 4, ug?), (vii) (4, b, 2(q%+1), 2(®+1)),

(viii) (q2+l, q2+l, q2+1, q2+l), (ix) (q2+2, q2+2 q2+2, q2+2),

(%) (q2+3, q2+3, q2+3, q2+3), (xi) (1, 1, q2+l, q2+l),

(xii) (1, 4, 9241, q2+1), (xiii) (1, 4, o2, ¢?), xiv) (a2, o2, 4%+, ¢°+1),
(xv) (1, q2, q2+l, q2+l), (xvi) (1, 6, 3q2), (xvii) (1, 2, q2, 2q2),

(xviii) (2, 2, 2(q°+1), 2(a+1)), in order u(q’+q+l) .

Proof. Let W = W(q2+q+l, q2) be the circulant weighing matrix

found in [14]. Let T be the shift matrix of order q2 +q+ 1.

Since P =J - W & W (& the Hadamard product) is the circulant incidence
matrix of the projective plane of order q , P = Z:Tdi where the

set of the di’ D, is a (q2+q+l, gq+l, 1) planar éifference set.

Now there exist x, y = x+ 1 in D . Let X = T* , Y = ¥ and

Z = T for some z €D s, Z#xX, z2z#y . Let m= (q2+q)/2 .

Then if we use
(i) aX + bY + cW, aX + bY - cW, bI-aT + bT2, bI + T - bT2
(ii) aX + bY + dW, aX - bY + dW, aX + cY - dW, aX ~ ¢Y - dw

(iii) aX + bY, aX - bY, cX + dW, dX - cW



(iv) aX + bY + cW, aX + bW - oW, dI + bT - bT° + 4T,
~4T + bT- aT® + bT® + aT"
(v) aX + bY + cW, aX + dZ - cW, bY-dZ - cW, aX - bY - dz
(vi) aX + bY + ¢Z + dW, aX + bY - ¢Z - dW, aX - bY + cZ - dw,
aX - bY - cZ + aw
(vii) aTmnl + bTm + bTm+l - aTm+2, aTm—l + BT - bTm+l + aTm+2
dX + cW, cX - 4w
(viii) aX + bW, aX - bW, cX + dW, cX - dW
(ix) aX + bY + dW, -bX + a¥ - cW, =-cX - dY + dW, -dX + cY + aW
(x) aX + bY + ¢Z + dW, =-bX + a¥ + dZ -~ cW, -cX - dY + aZ + dw,
~dX + cY ~ dZ + aW
(xi) aX, bX, cX + dW, cX - dw
(xii) al + bT™ - b7, b7™ + bT™, ax + W, cX - dw
(xiii) aT + b1 - bT™1, 7™ + p7™1, oW, aw
(xiv) aW, bW, cX + dWw, dX - cW
(xv) aX, bW, cX + dWw, dX - cW
(xvi) aX + aY¥Y - bW, aX + bW, a¥ + bW, cI + at’” - aTm+l
(xvii) aX + bW, aX - bW, cW, dI
(xviii) aW + bX + cY, aW + bX - cY, W - aX + dY, bW - aX - dY,

respectively, in the Goethals-

the enunciation.

2

COROLLARY 13. Since 7 = 2

exist in order 28

(1, 1, 1, u), (1, 1, 4, 4),

(1, 4, (1, 4, 5, 5),
(3, 4, (4, 4, 4, u),

(6, 6, 6, 6),

Seidel array, we obtain the designs of

+ 2 + 1 the following orthogonal designs

(1, 1, 5, 5), (1, 2, 4, 8), (1, 3, 6, 8),

(2, 2, 4, 16), (2, 2, 10, 10), (3, 3, 3, 12),
(4, 4, 4, 16), (4, 4, 5, 5), (4, 4, 10, 10)
(7, 7, 7, 7) .



Appendix I

We give the current status of known orthogonal designs

in order 20 . We use as a base the results of [6] and [13].

The following 4, 3 and 2 tuples give orthogonal
designs which may be found using theorem 13 of [1], We give the first

rows of the circulant matrices used:

types (1, 5, 5, 9) and (5,5, 9)

abc-c-b -cbd-db bdcc-d ~ddddd

type (3, 3, 6, 6)

0b-da -c 0bd-a-c cabb-a dab-ba

type (1, 3, 14)

ac-cc -c -bececcoO ccecb - cc-¢c0b

cc-c 0 -a acbhb-bo bb0cO c-b0coO

0bc-b -c 0Obcac ab-c 0 -c a-bc-b-c

0aa-b-b baa-aa 0aa-=-ab bO0Ob -ba

At present it is still unknown whether the following

tuples are the types of designs in order 20 (one of us has shown it

is not possible to construct these designs using four circulant matrices):
(1, 3, 6, 8) (1, 4, 4, 9) (2, 2, 5, 5) (3, 7, 8)



Appendix II.

We now update the status of the orthogonal design
problem in order 28 . We use Wolfe's list [2] as a basis. Theorem 12
(2,2,%,16)  (2,2,10,10)
gives us designs of types (1, 3, 6, 8),/(3, 4, 6, 8), (3, 3, 3, 12),
(4, 4, 4, 16), (4, 4, 10, 10), (1, 6, 12) and (1, 2, 12) constructed
from four circulant matrices. Theorem I3 of [1] may be used with the

circulant matrices whose first rows are given below to form the

indicated orthogonal designs:

type (1, 1, 2, 18)

abb-bb-b~b, ¢bb-bb~-b-b, dbbO0DbO0O, ~-dbb0DbO0O

type (1, 1, 4, 16)

abb-bb~-b~b, ¢bb-bb-b-b, bbbO0ODbO0O0, -dddodoo

type (1, 1, 8, 18)

-abbabaa, abb-ab-a-a, ¢cbb-bb-b-b, dbb-bb-b-b

type (1, 1, 10, 10)

daa-aa~a-a, ¢cbb-bb-b-b, ~abbO0bo0O0, baaoao0o
type (1, 1, 13, 13)
-abbabaa, -b-~a-ab-abb,caa-aa-a-a, dbb-~-bb-b-b

type (1, 2, 2, 16)

add-dd-d-d, b0dc0-d0, b0d-c0-d0, 0dd-dddd

type (2, 2, 2, 18)
ad-do0obd-d ad-d0-bd-d, cdddd-do0, -cdddd-do




type (2, 3, 4, 6)

0daoo0a-d

type (2, 8, 8, 8)

aab-bcd-c,

type (8, 3, 6, 6)

bdaoO0a-d,

type (4, 4, 8, 8)

type (6, 6, 6, 6)

aab-bcdo,

type (1, 2, 22)

ab0Obbb-b,

type (1, 3, 24)

ac-cc-cc-c,

type (1, 4, 20)

abb-bb-b-b,

type (1, 6, 18)

caab-b-a-a,

type (4, 4, 18)

a-b<-b-bb-b,ab-ecbb

type (3, 23)

-a0bbb-bb,

cdaoOO0-ad

aab-b - ~-d

cdaO0-ad

aab-b-c-d

-b-ba-ad-c?o0

a-b0-b-b-bb

2

C

2

>

bec-do

a-abb

ac-do

a-abb

-¢ —-¢ -d

-b

0

O ~-bb-bbbb

0

b

be-c~-¢c ¢ ¢ =¢ ,b-c-ccccec,

c-cbbbbo

3

0bb-b-bbb

-b-ba-a-aal0,aaa-aabo,

a~-bbbbdb-bb

-b b

a-b-bbbco

abb-bb-bo

-bc~d0000

a

-abb-c0 -

—ac~-~dO0OO0ODbO

a

-abb-cdo

-d -d ¢ -¢c -b a

o]

a

bb-bb -b-b

-C ¢c¢Cc -C CZC

0-bb-bbec

a-~aa-babo

bb-b-bcoO

bbbb-b-b



type (5, 23)

aa-a-bbbb, -ab-ab-bb-b,bbbbb-b-b, bbb-bbb-b

type (7, 10)

aooboO0OO, b-aa00abo0, ao0O-bbb0ob, -bbbO0Ob -a-a



Four Variables. We have the following possible 4-tuples for orthogonal

designs in order 28 (those that are known to exist are marked V) - all
but the (4, 4, 9, 9) design may be constructed using four circulant

matrices in the Goethals-Seidel array:

~

1, 1,1, 1) 7/ (1, 3, 6, 8) v (2, 4, 4, 18)

(1, 1, 1, 4) v (1, 3, 6, 18) (2, 4, 6, 12)
(1, 1, 1, 9) v (1, 4, 4, 4) v/ (2, 4, 8, 9)
(1, 1, 1, 18) ¥/ (1, 4, 4, 9) ¥ (2, 5, 5, 8) V
(1, 1, 1, 25) v (1, 4, 4, 16) (2, 8, 8, 8) v
(1, 1, 2, 2) v (1, 4, 5, 5) V (2, 8, 9, 9)
(1, 1, 2, 8) V (1, 4, 8, 8) (3, 3, 3, 3) ¥
(1, 1, 2, 18) v (1, 4, 9, 9) (3, 3, 3, 12) ¢
(1, 1, 4, 4) vV (1, 4, 10, 10) (3, 3, 6, 6) ¢/
(1, 1, 4, 9) ¥ (1, 5, 5, 9) ¥ (3, 4, 6, 8) ¢
(1, 1, 4, 16) v (1, 8, 8, 9) (3, 6, 8, 9)
(1, 1, 5, 5) V (1, 9, 9, 9) (4, 4, 4, 4) ¥
(1, 1, 8, 8) v (2, 2, 2, 2) ¥ (4, 4, 4, 9)
(1, 1, 8, 18) ¥ (2, 2, 2, 8) ¥V (4, 4, 4, 18) v
(1, 1, 9, 9) V (2, 2, 2, 18) V (4, 4, 5, 5) v
(1, 1, 10, 10)/ (2, 2, 4, 4) V (4, 4, 8, 8) v
(1, 1, 13, 13)/ (2, 2, 4, 9) | (4, 4, 9, 9) ¥
(1, 2, 2, ¥) v (2, 2, 4, 16) ¥V . (4, 4, 10, 10) ¥
(1, 2, 2, 9) ¥ (2, 2, 5, 5) v (4, 5, 5, 9)
(1, 2, 2, 16) v (2, 2, 8, 8) V (5, 5, 5, 5) V
(1, 2, 3, 6) ¥ (2, 2, 9, 9) (5, 5, 8, 8)
(1, 2, 4, 8) v (2, 2, 10, 10) ¥V (5, 5, 9, 9)
(1, 2, 4, 18) (2, 3, 4, 6) V (6, 6, 6, 6) v
(1, 2, 6, 12) (2, 3, 6, 9) (7, 7, 7, 1) ¥V

1, 2, 8, 9) Vv ‘(2, b, 4, 8) v



Three Varjables. There are orthogonal designs of types (1, 9),

(2, 2), (2, 8), (5, 5) and (13) each constructed from two
circulant matrices in order 14 . Hence there are orthogonal

designs of types

(1, 9, 13) (2, 2, 13) (2, 8, 13) (5, 5, 13)

in order 28

Using the non-existence results quoted above we have
listed all 3-tuples in order 28 which could be the types of orthogonal
designs. The designs marked ¢ may be constructed using four
circulant matrices (from the three or four variable designs quoted
above) and those marked @ exist but it is unknown whether they

can be constructed using four circulant matrices.



(1,
(1,
1,
(1,
(1,
(1,
1,
(1,
1,
(1,
(1,
(1,
(1,
(1,
1,
(1,
(1,
(1,
a,
1,
1,
(1,
(1,
(1,
(1,
@,
(1,
(1,
(1,
1,

(1,

1, 1) V
1, 2) V/
1, 4) v
1, 5) Y
1, 8) ¥
1, 9) V
1, 10)
1, 13)
1, 16)
1, 17)
1, 18)
1, 20)

1, 25)

~
~
NN XN X
~
~

1, 26)
2, 2) ¥
2, 3) ¢/
2, u) v
2, 6) vV
2, 8) V¥
2, 9) ¢/
2, 11) v
2, 12) V
2, 16) v
2, 17) V
2, 18) v
2, 19) ¥
2, 22)

2, 25) v
3, 6) V

3, 8) v

3, 14) v

1,
(1,
(1,

a,

3, 18) V
3, 22)
3, 24)
b, i)
4, 5)
4, 8)
4, 9)
4, 10)
4, 13)

4, 16)

~
~
~
~ NN X
~
~

4, 17)
4, 18)
4, 20)
5, 5)
5, 6)
5, 9)

5, 14)

~
~0N N X
~

5, 16)
5, 19)
5, 20)
6, 8) v
6, 11) v
6, 12) v
6, 1u4)

6, 18)

6, 21)

8, 8) v
8, 9) v
8, 11) v
8, 12)

8, 16)

(1, 8, 17)
(1, 8, 18)
(1, 8, 19)
(1, 9, 9)

(1, 9, 10)

~
NN N XN

(1, 9, 13)
(1, 9, 16)
(1, 9, 18) ¥
(1, 10, 10) ¥
(1, 10, 11) v
(1, 10, 14)
(1, 13, 13) V
(1, 13, 14) ¥
(2, 2, 2) V
(2, 2, 4) v
(2, 2, 5) v
(2, 2, 8) v |
(2, 2, 9) ¥
(2, 2, 10) V
(2, 2, 13) v
(2, 2, 16) vV
(2, 2, 17) ¥
(2, 2, 18) v
(2, 2, 20) v
(2, 3, u) vV
(2, 3, 6) v
(2, 3, 1) v
(2, 3, 9V
(2, 3, 10) vV
(2, 3, 15)

(2, 3, 16) ¥

(2, 4, #) ¥
(2, 4, 6) ¥
(2, 4, 8) V
(2, 4, 9) ¥/
(2, 4, 11)
(2, 4, 12) v
(2, 4, 16) v
(2, 4, 17)
(2, 4, 18) v
(2, 4, 19)
(2, 4, 22)
(2, 5, 5) vV
(2,5, 7) v
(2, 5, 8) v
(2, 5, 13) v
(2, 5, 15)
(2, 5, 18)
(2, 6, 7) ¥
(2, 6, 9)
(2, 6, 11)
(2, 6, 12)
(2, 6, 13)
(2, 6, 16) ¥
(2, 6, 17)
(2, 7, 10)
(2, 7, 12)
(2, 7, 13)
(2, 7, 19)
(2, 8, 8) v
(2, 8, 9) V

(2, 8, 10) ¥



(2, 8, 13) v (3, 6, 18) (4, 5, 19) (5, 7, 10)

(2, 8, 16) V (3, 6, 19) (4, 6, 8) V (5, 7, 14)
(2, 8, 18) (3, 7, 8) v (4, 6, 11) v (5, 8, 8)
(2, 9, 9) v (3, 7, 10) (4, 6, 12) (5, 8, 13)
(2, 9, 11) (3, 7, 11) (4, 6, 14) (5, 9, 9)
(2, 9, 12) (3, 7, 15) (4, 6, 18) (5, 9, 10)
(2, 9, 17) (3, 7, 18) (4, 8, 8) V (5, 9, 14)
(2, 10, 10) V (3, 8, 9) v (4, 8, 9) V (5, 10, 10)
(2, 10, 12) ¥ (3, 8, 10) v (4, 8, 11) (6, 6, 6) v
(2, 11, 11) (3, 8, 15) (4, 8, 12) v (6, 6, 12) v
(2, 11, 13) (3, 9, 14) (4, 8, 16) v (6, 7, 8) v
(2, 11, 15) (3, 10, 15) (4, 9, 9) ® (6, 8, 9)
(2, 13, 13) ¥ (3, 11, 14) (4, 9, 10) (6, 8, 11)
(3, 3, 3) V (4, 4, 4) v (4, 9, 13) ® (6, 8, 12)
(3, 3, 6) v (4, 4, 5) V/ (4, 10, 10) V (6, 9, 11)
(3, 3, 12) ¥ (4, 4, 8) ¥ (4, 10, 11) (7, 7, 7) ¥
(3, 3, 15) v (4, 4, 9) v/ (4, 10, 1) vV (7, 7, 14) ¥/
(3, 4, 6) v (4, 4, 10) ¥ (5, 5, 5) V (7, 8, 10)
(3, 4, 8) v (4, 4, 13) (5, 5, 8) v (7, 8, 13)
(3, 4, 14) v (4, 4, 16) v (5, 5, 9) v (7, 10, 11)
(3, 4, 18) (4, 4, 17) (5, 5, 10) v (8, 8, 8) v
(3, 6, 6) V (4, 4, 18) v (5, 5, 13) V (8, 8, 9)
(3, 6, 8) v (4, 4, 20) ¥ (5, 5, 16) (8, 8, 10) v
(3, 6, 9) V (4, 5, 5) v (5, 5, 18) (8, 9, 9) ®
(3, 6, 11) (4, 5, 6) v (5, 6, 9) v (8, 9, 11)
(3, 6, 12) v (4, 5, 9) v (5, 6, 14) (3: g? S? d
(3, 6, 16) (4, 5, 14) (5, 6, 15) (9, 9, 10)
(3, 6, 17) (4, 5, 16) (5, 7, 8) v

Y these matrices are constructed using four circulant matrices

® constructed from the (4, 4, 9, 9) design



Two Variables.

Of these, 27 are eliminated as types
Theorem 1 (iii) and Theorem 2.
the following 16

design in order

(4, 19)
(5, 21)
(6, 17)
(6, 20)

(6, 21)

All those that do exist except

using four circulant matrices.

The

designs in order

(1, 7)
(1, 15)
(1, 23)
(2, 14)
(3, 5)

(3, 13)

One Variable.

are not known to be

28 .

(6,
(7,
(7,
(8,

(9,

27

28

(3,
(3,
C
(4,
(4,

(55

There are

22)
15)
19)
17)

16)

196 pairs

0f the

(10,
(11,
(11,
(11,

(11,

15)
12)
14)
15)

17)

(G, X)

(9, 17)

such that

(12, 14)

i+ k=28,

of orthogonal designs by
remaining 169 pairs, only

the type of an orthogonal

are constructed

2-~tuples that cannot be the types of orthogonal

are:

20)
21)
7)

15)
23)

11)

(5,
(5,
(5,
(6,
(7,

(73

12)
19)
22)
10)
9)

16)

(7, 17)
(7, 20)
(8, 1u)
(9, 15)
(10, 17)

(11, 13)

(11, 186)
(12, 13)

(12, 15) .

All one variable designs exist in order 28 .
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