
Fast Operations for Certain Two Alphabet Circulant Matrices

G Awyzio and J Seberry
Centre for Information Security Research,Faculty of Engineering and Information Sciences,

University of Wollongong, NSW, 2522,Australia

Abstract— In order to efficiently compute some combina-
torial designs based upon circulant matrices which have
different, defined numbers of 1s and 0s in each row and
column we need to find candidate vectors with differing
weights and Hamming distances. This paper concentrates
on how to efficiently create such circulant matrices. These
circulant matrices have applications in signal processing,
public key codes and spectography.

Keywords: algorithm, periodic autocorrelation function, cross
correlations , Hamming distance, circulant matrices.

1. Introduction
This paper uses the mapping of two-alphabet (for example

{±1}, {x,y}, {0,1}) circulant matrices to binary equivalents.
Interest in binary arrays or matrices with a constant

row sums is of continuing study in combinatorics. For
example a BIBD(v, b, r, k, λ) which can be defined as a
v × b matrix which has constant row sum r and constant
column sum k and distinct inner product of rows λ and
variations of this design are used in statistical and medical
experiments. Recently such circulant matrices have been
used to construct asymmetric public key codes. Sequences
with elements 0,±1, very small periodic or non-periodic
autocorrelation function and small cross correlation function
are also of considerable interest in signal processing. Powers
of circulant matrices arise in spectography but in a different
form.

2. Definitions and Preliminaries
Since this paper uses the mapping of two-alphabet cir-

culant matrices to binary equivalents the fast construction
of binary candidates that match specified parameters is
crucial. We discuss how some operations relevant to the
multiplication of matrices, an O(n3) process, can in some
cases be converted to a linear process by using architectural
level operations.

We first clarify the notation and processes that we will
use in our analysis.

2.1 Circulant and Type 1 Matrix Basics
Because it is so important for the rest of our work we

now spend a little effort to establish why the properties we
will require for binary circulant matrices are so important.

We define the shift matrix, T of order n by

T =


0 1 · · · 0
0 0 · · · 0
...

...
1 0 · · · 0

 . (1)

So any circulant matrix, of order n and first row
x1, x2, · · · , xn, that is,

x1 x2 x3 · · · xn
xn x1 x2 · · · xn−1
xn−1 xn x1 · · · xn−2

...
...

x2 x3 x4 · · · x1

 (2)

can be written as the polynomial

x1T
n + x2T + x3T

2 · · ·xnTn−1.

We now note that polynomials commute, so any two
circulant matrices of the same order n commute.

Mathematically we have that:
Definition 1: A circulant matrix X = (xij) of order n is

a matrix which satisfies the condition that

xij = x1,j−i+1 (3)

where j − i+ 1 is reduced modulo n [1].
Thus any circulant matrix X = (xij) of order n can be

defined by
xij = xi+1,j+1 = x1,j−i+1,

that is, the first row is enough to specify the whole matrix.
In all cases the sums are reduced modulo n so that n is
written n, n+ 1 is written as 1 and so on.

In all our definitions of circulant matrices we have as-
sumed that the rows and columns have been indexed by
the order, that is for order n, the rows are named after the
integers 1, 2, · · · , n and similarly for the columns. The
internal entries are then defined by the first row using a
1:1 and onto mapping f : G → G. However we could
have indexed the rows and columns using the elements of a
group G, with elements g1, g2, · · · , gn. Loosely a type one
matrix will then be defined so the (ij) element depends on
a 1:1 and onto mapping of f(gj − gi) for type 1 matrices
which occur in construction of combinatorial designs. We



use additive notation, but that is not necessary. Seberry-
Wallis and Whiteman [2] have shown that circulant and type
1 matrices can be used interchangeably in the enunciations
of theorems. This can be used to explore similar theorems
in more structured groups.

2.2 Periodic Autocorrelation Function and
Cross Correlation Function

These terms, which arise in signal processing, are usually
thought of differently by mathematicians.

Definition 2: The PAF (j) or periodic auto correlation
function of a sequence {x11, x12, · · · , x1n} (that is the
first row of a circulant matrix X = (xij)) of order n is
given, for j = 1, · · · , n, by

PAF (j) =

n∑
i=1

(x1ix1,i+j)

Definition 3: The PAF (X) or PAF (j, k) or periodic
auto correlation function of the two rows, j and k, of a
circulant matrix X = (xij) of order n is defined as

PAF (j, k) =

n∑
i=1

(xixk−j+i).

We note that this is exactly the same as the inner product
of rows j and k of the matrix XX>.

Definition 4: CPAF or cross correlation function of two
rows j of a circulant matrix X = (xij) of order n and k of
a circulant matrix Y = (yij) of order n is defined as

CPAF (j, k) =

n∑
i=1

(xiyk−j+i).

This is also written as CPAF (X,Y ).
In signal processing we would consider matrices with

elements ±1 but clearly each circulant matrix with these
two elements uniquely maps to a binary circulant matrix.

3. General Properties of Circulant Ma-
trices

Remark 1: Each row of a circulant ±1 matrix can be
considered as an integer, uniquely, by replacing the elements
−1 by zero and converting the sequence to decimal. Thus a
circulant matrix of order n can be represented by an integer
of size the least integer greater than ln2 n. This means any
sequence we would consider can be represented by one word
of storage. For example for the length n = 7 the integer
106 = 64 + 32 + 8 + 2 represents the row
1 1 -1 1 -1 1 -1,

or
1 1 0 1 0 1 0 =106.

3.1 Complexity of Squaring a Matrix
We note
Theorem 1: Any circulant matrix, X = (xij),of order n

can be defined by its first row. Writing X in terms of the
shift matrix (1) we have

X2 = (x11I + x12T + x13T
2 + · · ·+ x1,nT

n−1)2

so squaring can be achieved by O(n(n+1
2 ) operations.

We note X2 contains at most n distinct values which are
the new first row.

Similarly the product of two order n, circulant matrices,
takes O(n(n+1

2 ) operations and contain at most n distinct
values which are the new first row.

In future work, we will show that, using our construc-
tion for candidates, we can make this a linear number of
operations.

Example 1: Let X be a 5 × 5 matrix with first row
elements a, b, c, d and e:

X =


a b c d e
e a b c d
d e a b c
c d e a b
b c d e a

 .
As the (j, k) element of X2 is equal to the (1, k − j + 1)
element, because the answer is also a circulant matrix: the
elements of X2 are

(1, 1) = (2, 2) = (3, 3) = (4, 4) = (5, 5) = a2 + 2be+ 2cd

(1, 2) = (2, 3) = (3, 4) = (4, 5) = (5, 1) = 2ab+ 2ce+ d2

(1, 3) = b2 + 2ac+ 2be

(1, 4) = e2 + 2ad+ 2bc

(1, 5) = c2 + 2ae+ 2bd

These 5 values are the first row of X2 and give all the entries
of X2 all the possible PAF s.

We also note that
Theorem 2: The PAF of a sequence of n elements

contains only n+1
2 distinct entries.

Example 2: Let X be a 5 × 5 matrix with first row
elements a, b, c, d and e:

X =


a b c d e
e a b c d
d e a b c
c d e a b
b c d e a

 .
Then

PAF (1, 1) = PAF (k, k) = a2 + b2 + c2 + d2 + e2,

PAF (1, 2) = · · · = PAF (n, 1) = ae+ ba+ cb+ de+ ed,

PAF (1, 3) = · · · = PAF (n−1, 1) = ad+be+ca+db+ec.

These 3 values are all the possible PAF s.



4. Architectural Level Operations
Because we depend upon the speed of bit level manipu-

lation we shall now discuss the advantages of architectural
level operations in modern computer architectures. Histor-
ically architectural level operations afforded speed advan-
tages for all operation in a high level language including
additions and subtractions. Modern architectures perform
additions almost as fast as bitwise manipulations but still
take more cycles to perform a multiplication.

The speed gain is found by being able to manipulate
multiple pieces of data with a single instruction. For instance
if we wished to find the inner product of two vectors stored
in an array we would need to read each entry multiply
them and add each result. With two binary vectors the inner
product can be found by performing a bitwise XOR and
bit count to find the Hamming distance of the two vectors.
Knowledge of this result can be used to find the inner
product of the two vectors using a single subtraction and a
bitwise shift of the Hamming distance. Thus for larger length
vectors significant savings in operations can be found using
architectural level operations.

5. Integers to Bits
We now move from representing the circulant matrices as

vectors of length n and elements from a 2-ary alphabet to
first using their binary equivalent and then noting that the
binary vector for lengths ≤ 32 can be stored as a single
binary word of 32 bits. We now establish the requirements
that reflect our specified parameters as above in single words.
That is we work to pre-specify the length and weight using
architectural level operations.

Example 3: Let X be {x, y} be a sequence of length 10:
X = { x x x y y y x y x y}.

It can be represented as the binary number

1110001010base 2 = 187base 10.
In general we are looking for binary numbers of length

` and weight h, with pre-specified properties such as the
sum of the components, multiplication properties, the PAF
and/or inner products. A naive search for candidates with
such properties can be achieved in the binary domain by
iterating through all the binary numbers and testing the
weight of each number. This would require that 2` numbers
are tested for conformity to the required parameters.

In our approach we start by assuming that candidates for
a previous weight h − 1 and length ` are already known:
then new potential candidates with weight h can be rapidly
found using an iterative procedure.

For each candidate of size h − 1 we need to find the
highest set bit (HSB) of the candidate which requires at most
` − (h − 1) tests. Once the position of the HSB has been
determined then there are at most `− h operations required

to set the higher order bits. Thus the expansion from weight
h− 1 to h takes (2× `− 2× h+ 1).

Algorithm 1 Construction of Binary Candidates
Step 1: Read the first candidate of a given length (`) and
weight one less (h − 1) than the desired weight (h) from
file
Step 2: while we have have candidates remaining in this
file
Step 3: find the HSB in current candidate
Step 4: set a single bit for each position between this bit
and the length of the candidate

Example 4: Suppose we have starting candidate
0 0 0 1 1 0

of length 6 and weight 2. This can be used directly to find
three candidates with a weight of 3 and length 6
0 0 1 1 1 0
0 1 0 1 1 0
and;
1 0 0 1 1 0

Which each have one additional bit set above the HSB of
the seed candidate. By iterating through the ten candidates
of weight 2 we can easily find the ten candidates of length
5 and weight 3 in this manner.

Thus considering the complete candidate set with a weight
of 2 we obtain;
0 0 0 0 1 1,
0 0 0 1 0 1,
0 0 1 0 0 1,
0 1 0 0 0 1,
1 0 0 0 0 1,
0 0 0 1 1 0,
0 0 1 0 1 0,
0 1 0 0 1 0,
1 0 0 0 1 0,
0 0 1 1 0 0,
0 1 0 1 0 0,
1 0 0 1 0 0,
0 1 1 0 0 0,
1 0 1 0 0 0,
1 1 0 0 0 0

Which leads to the generation of 20 candidates of the
same length and one extra bit set.
0 0 0 1 1 1,
0 0 1 0 1 1,
0 1 0 0 1 1,
1 0 0 0 1 1,
0 0 1 1 0 1,
0 1 0 1 0 1,
1 0 0 1 0 1,
0 1 1 0 0 1,



1 0 1 0 0 1,
1 1 0 0 0 1,
0 0 1 1 1 0,
0 1 0 1 1 0,
1 0 0 1 1 0,
0 1 1 0 1 0,
1 0 1 0 1 0,
1 1 0 0 1 0,
0 1 1 1 0 0,
1 0 1 1 0 0,
1 1 0 1 0 0,
1 1 1 0 0 0

Extending these 20 candidates results in 15 candidates
with 4 bits set. These candidates are the inverse of the 15
candidates with 2 bits set. Thus we only need to generate
the candidates up to a weight of the integer part of `+1

2 . As
the length of the candidate set increase it is seen that the
number of candidates will match a row on Pascal’s triangle.

Additionally the search space can be reduced further by
recognizing that since 3 ≡ 5 − 2 these candidates could be
found directly by inverting all of the candidates of weight 2.
Thus we only need to generate the candidates up to a weight
of the integer part of `+1

2 .
The number of candidates for each weight (h) of a given

length (`) follows the entries for a row in Pascal’s triangle
meaning that if we wish to find candidates with the integer
part of `+1

2 bits set there would be at worst 2`

2 operations
required to find these candidates. However, in many cases
the weight of candidates is either close to 0 or close to `
and thus significant savings can be made in not having to
test all numbers.

Example 5: If we consider the case where we require
candidates of length 13 with 4 bits set then we would need
to find all candidates with 1, 2, 3 and 4 bits set. The total
number of candidates would be 13 + 78 + 186 + 715 =

992 candidates
∑4

h=1

(
13
h

)
that are discovered using this

method. This is of order 2(`− h+ 1) which is a significant
saving over the 2` = 213 numbers that would be tested using
the naive approach. For longer length candidates the savings
as the required weight deviates from `

2 becomes even more
significant.

5.1 Circulation in the Binary Domain
Construction of a circulant matrix from these binary

candidates can be performed using bitwise operations upon
the first row to shift the entire row by one bit and move
the lowest bit to the highest bit position. Many of the
operation usually performed upon these circulant matrices
can also be done in the binary domain using architectural
level operations.

This requires one operation to perform each of the fol-
lowing four steps for each row, copy row(i) to row(i+ 1),

Algorithm 2 Circulation of a Binary Matrix
Input: The first row of the circulant matrix of length and
order ` in binary form (row(1))

for i = 1 to `
Copy row(i) to row(i+ 1)
Set variable bit to the LSB of row(i+ 1)
Shift row(i+ 1) right by one
Set MSB of row(i+ 1) to bit

test and set the variable bit, shift row(i + 1) right by one
bit and set MSB of row(i + 1) to the value of bit. Thus
each additional row of the circulant matrix requires four
operations to create. Therefore the entire circulant matrix can
be computed in 4× ` operations. It is noted that any row of
the circulant matrix row(j) can be directly computed from
the first row by testing the lowest j bits and saving them,
shifting the first row right by j bits (j operations at most)
and copying the original lowest j bits to the top j bits of
the shifted row.

5.2 Binary Inner Products
We can take advantage of the fact that when integer

matrices under consideration contain ±1 only to reduce the
computation of inner product vectors in the binary domain.
When any two values are the same in a first row circulation
then they will result in a +1 in determining the inner product
and when they are different they will result in a −1.

In the integer domain the inner product is determined as
Theorem 3: IP = a1

st

1 ∗a2
nd

1 +a1
st

2 ∗a2
nd

2 +· · ·+a1st` ∗a2
nd

`

which results in q negative results and p = (n−q) positive
results.

Thus the inner product can be determined to be p− q

IP = (n− q)− q = n− 2q (4)

In the binary domain the location of bits that are different
(equivalent to a −1 in the integer domain) can be achieved
with a bitwise XOR of two rows of the circulant matrix. The
Hamming distance of the resultant XOR on the two vectors
is equivalent to the number of -1s in the integer domain. The
binary inner product can be determined as follows

In the binary domain the number of negative bits (weight)
in the inner product of two rows can be determined by
performing a bitwise XOR on two vectors (rows of the
circulant matrix). The integer inner product can be calculated
directly from knowledge of the number of negative bits (q)
and the length of the two vectors (`)
IP = `− 2× q
In Example 2 we showed that the circulant inner products

obtained from an ` matrix has only `+1
2 distinct values.

To find the inner product in the integer domain requires `
muliplications and ` − 1 additions for each inner product.
Thus in total it would require `(`−1)

2 multiplications and



`(`−2)
2 additions. Now we consider the case where we have

moved the first row into a binary word.

Algorithm 3 Binary Inner Product
Input: The first row of the circulant matrix of length and
order ` in binary form (row(1))

for i = 2 to `+1
2

Circulate row(i) to row(i+ 1)
Hamming Distance =
weight of (XOR(row(1), row(i))
IP (i) = `− (Hamming distance× 2)

[Note: multiplication by 2 is a shift left operation at the
architectural level]

This means that, ignoring the circulation operations, we
have one operation to find the XOR of two rows, one
operation to find the weight, and two operations to calculate
the inner product of the two rows. This means we have four
operations to find the inner product of any two rows of the
circulant matrix regardless of the value of ell. To find all
the inner products we need to calculate the inner product
for `−1

2 rows. Thus the total number of calculations required
to find all inner products of a circulant matrix of order ` is
2× (`− 1).

6. Conclusion
We have introduced architectural level operations for

various two alphabet circulant matrix operations. We have
shown that this approach reduces the complexity in each
case we have studied. We intend to further use this approach
to search for BIBDs, sequences with elements 0,±1, very
small periodic or non-periodic autocorrelation function and
small cross correlation function and their applications.

Acknowledgment
The authors would like to thank Bob Brown, Ian Piper,

Angela Piper and Graham Williams for their advice and
assistance.

References
[1] Jennifer Seberry Wallis, Hadamard matrices, in W. D. Wallis, Anne

Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room
Squares, Sum-Free Sets and Hadamard Matrices, Lecture Notes in
Mathematics, Springer Verlag, Berlin, 1972.

[2] Jennifer Wallis and A. L. Whiteman, Some classes of Hadamard
matrices with constant diagonal, Bull. Austral. Math. Soc., 7, (1972),
233–249.


