
Introduction to Security Reduction

My IQ is up to 186.

My interest is breaking schemes.

You want me to help you solve problem?

Fool me first!

Lecture 2: Preliminaries
(Field, Group, Pairing, and Hash Function)

Introduction to Security Reduction 1

Lecture 12: Flaws in Papers
Lecture 11: Revision of Security Reduction
Lecture 10: Security Proofs for Encryption (Computational)
Lecture 9: Security Proofs for Encryption (Decisional)
Lecture 8: Security Proofs for Digital Signatures
Lecture 7: Analysis (Towards A Correct Reduction)
Lecture 6: Simulation and Solution
Lecture 5: Difficulties in Security Reduction
Lecture 4: Entry to Security Reduction
Lecture 3: Preliminaries (Hard Problem and Secure Scheme)
Lecture 2: Preliminaries (Field, Group, Pairing, and Hash Function)
Lecture 1: Definitions (Algorithm and Security Model)

Computational Complexity Theory

1/41

Introduction to Security Reduction 1

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition of Finite Field
Definition (Finite Field)
A finite field (Galois field), denoted by (F,+, ∗), is a set containing a
finite number of elements with two binary operations “+” (addition) and
“∗” (multiplication) defined as follows.

∀u, v ∈ F, we have u + v ∈ F and u ∗ v ∈ F.
∀u1, u2, u3 ∈ F, (u1 + u2) + u3 = u1 + (u2 + u3) and

(u1 ∗ u2) ∗ u3 = u1 ∗ (u2 ∗ u3).
∀u, v ∈ F, we have u + v = v + u, u ∗ v = v ∗ u

∃0F, 1F ∈ F (identity elements), ∀u ∈ F, we have
u + 0F = u and u ∗ 1F = u.

∀u ∈ F, ∃–u ∈ F such that u + (–u) = 0F.
∀u ∈ F∗, ∃u−1 ∈ F∗ such that u ∗ u−1 = 1F. Here, F∗ = F\{0F}.
∀u1, u2, v ∈ F, we have (u1 + u2) ∗ v = u1 ∗ v + u2 ∗ v.

Note: The binary operations 6= “+, ×” in elementary arithmetic.

3/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Field Operations

The two binary operations “addition and multiplication” can be extended
to subtraction and division through their inverses described as follows.

∀u, v ∈ F, we have
u− v = u + (−v),

which is the addition of u and the additive inverse of v.

∀u ∈ F, v ∈ F∗, we have

u/v = u ∗ v−1,

which is the multiplication of u and the multiplicative inverse of v.

4/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition Explanations

Let (Fqn ,+, ∗) be a finite field.
n is a positive integer, and q is a prime number called characteristic.

This finite field has qn elements.

q× q× · · · × q× q︸ ︷︷ ︸
n

Each element in the finite field can be seen as an n-length vector,
where each scalar in the vector is from the finite field Fq.

The bit length of each element in this finite field is n · |q|.

5/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Special Finite Field: Prime Field Fq

(Fq,+, ∗)

There are q elements in this field Zq = {0, 1, 2, · · · , q− 1}.

u + v = u+v mod q.

u ∗ v = u∗v mod q.

−u = q−u.

u−1 = uq−2 mod q.

Note: Prime field is important due to the use of a group of prime order.

6/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Names of Group

There are three types of groups from basic to advanced.

1.Abelian Group
↓

2.Abelian Group with Cyclic
↓

3.Abelian Group with Cyclic of Prime Order

7/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Definition of Group (1)

Definition (Abelian Group)
An abelian group, denoted by (H, ·), is a set of elements with one binary
operation “·” defined as follows.

∀u, v ∈ H, we have u · v ∈ H.
∀u1, u2, u3 ∈ H, we have (u1 · u2) · u3 = u1 · (u2 · u3).
∀u, v ∈ H, we have u · v = v · u.
∃1H ∈ H, ∀u ∈ H, we have u · 1H = u.
∀u ∈ H, ∃u−1 ∈ H, such that u · u−1 = 1H.

8/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Definition of Group (2)
Definition (Abelian Group with Cyclic)
An abelian group H is a cyclic group if there exists (at least) one
generator, denoted by h, which can generate the group H:

H =
{

h1, h2, · · · , h|H|
}

=
{

h0, h1, h2, · · · , h|H|−1
}
,

where |H| denotes the group order of H and h|H| = h0 = 1H.

Definition (Abelian Group with Cyclic of Prime Order)
A group G is a cyclic subgroup of prime order if it is a subgroup of a
cyclic group H and |G| is a prime number, where

|G| is a divisor of |H|;
There exists a generator g ∈ H, which generates G.

Abelian Group with Cyclic of Prime Order is short as Cyclic Group.

9/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Why Cyclic and Prime Order?

G = {g0, g1, · · · , gp−1} for a prime p.

The group G is the smallest subgroup without confinement attacks.

Any group element except g0 is a generator of G.

Any integer in {1, 2, · · · , p− 1} has a modular multiplicative inverse.
For any x ∈ Z∗p = {1, 2, · · · , p− 1}, we can definitely compute

g
1
x .

Note: We don’t have to use a group (in prime order) in cryptography.

10/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Cyclic Group in Description

To define a group for scheme constructions, we need to specify

The space of the group, denoted by G.

The generator of the group, denoted by g.

The order of the group, denoted by p.

(G, g, p) are the basic components when describing a group.

Note: We could need more information when describing a group.

11/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Size of Group Element

What is the representation size of each group element?

G = {g0, g1, · · · , gp−1} for a prime p.

p group elements and each group element has the same size.
Each group element can be encoded into a bit string.
Each group element must be represented with a different bit string.
To represent p = 2160 elements, we need at least 160-bit strings.
It could be hard to achieve optimal size.

We therefore have the representation of group element

|g| ≥ 160

12/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Computing Problems Over Group

When we use a cyclic group to build cryptography,
Some computing problems must be easy. Otherwise, cryptography
is not usable. A group only defines the group operation “ · ”, but it
can be extended to group exponentiation.

Some computing problems must be hard. Otherwise, cryptography
is not secure. The most fundamental hard problem over a group is
the discrete logarithm problem.

Note: DL problem is hard in some well-constructed groups only.

13/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Easy: Group Exponentiation (1)

Let (G, g, p) be a cyclic group and x be a positive integer from Zp. We
denote by gx the group exponentiation.

The group exponentiation gx is defined as

gx = g · g · · · g · g︸ ︷︷ ︸
x

.

The group exponentiation is composed of x− 1 copies of the group
operations from the above definition. It is impractical to conduct
x− 1 copies of computations when x is as large as 2160.

There exist algorithms that can compute the group exponentiation
very fast. For example, the square-and-multiply algorithm.

14/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Easy: Group Exponentiation (2)

Given g ∈ G and x ∈ Zp, we can compute gx as follows.
Convert x into an n-bit string x:

x = xn−1 · · · x1x0 =

n−1∑
i=0

xi2i.

Let gi = g2i
. Compute gi = gi−1 · gi−1 for all i ∈ [1, n− 1].

Compute gx by

gx =

n−1∏
i=0

gxi
i = g

∑n−1
i=0 xi2i

.

15/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Hard: Discrete Logarithm

Suppose we are given g, h ∈ G \ 1G

The integer x satisfying gx = h is called the discrete logarithm.

Computing x is known as the discrete logarithm (DL) problem.

If G is a group of prime order, then for any two group element
g, h ∈ G \ 1G, the discrete logarithm x must exist! (Another reason why
we need a group of prime order)

Note: If DLP is easy, all schemes over such a group must be insecure.

16/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Hardness of DL (1)

Let (G, g, p) be any group. The most efficient algorithm for solving DLP
requires Ω(

√
p) steps (exponentiation). Roughly speaking, at least

√
p.

Ω(
√

p) steps means “lower bound” √p (at least).
O(
√

p) steps means “upper bound”
√

p (at most).
This algorithm can solve DL problem over any group.
DLP over some specific groups could take less than

√
p steps.

DLP over some specific groups could be easy. O(1) steps.

Note: The step number should be c · √p for some positive coefficient c in
computational complexity.

17/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Hardness of DL (2)

To implement (design) a scheme constructed over a group (G, g, p),
where the adversary must take at least 280 steps to break the scheme,
we must consider generic attack and specific attack in solving the DL
problem.

The parameter must satisfy p ≥ 2160 to resist generic attacks.

All other parameters for specific group constructions, such as the
size of group element, must be large enough to resist specific
attacks for solving DLP.

18/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Cyclic Groups and Finite Fields

A finite field (Fqn ,+, ∗) already implies two groups.

(Fqn ,+), (F∗qn , ∗)

We still need other advanced groups for various reasons.

For example, with short representation of group element.

19/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Group Choice 1: Multiplicative Group

A multiplicative group is defined as (G, g, q, p).
Group Elements. The group elements are integers from

Z∗q = {1, 2, · · · , q− 1}, |g| = logq .

Group Generator. g is from Z∗q (some integers from this set are not
the generators of G).

Group Order. p satisfying p|(q− 1).

Group Operation. We have u · v = u× v mod q.

Note: The integer q significantly affects the hardness of DLP in this
special construction and q must be at least 1024 bits. Otherwise, solving
its DLP takes less than 280 steps.

20/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Group Choice 2: Elliptic Curve Group

An elliptic curve group is defined as (G, g, p).
Group Elements. The group elements are points (represented with
x-coordinate and y-coordinate) on the elliptic curve. When the
curve is given, we can use the x-coordinate and one more bit only
to represent a group element.

Group Generator. g is also a point.

Group Order. p a prime order.

Group Operation. We have u · v defined by elliptic curves.

Note: The size of group element can be as short as the group order.
That is, |g| = |p| = 160 where solving its DLP requires 280 steps.

21/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Definition and Description Easy Problem and Hard Problem Two Group Choices Computations Over Group

Computations Over Group (Prime Order)

Group Operation. Given g, h ∈ G, compute g · h.

Group Inverse. Given g ∈ G, compute 1
g = g−1.

Since gp = g · gp−1 = 1 (not the integer 1), we have g−1 = gp−1.

Group Division. Given g, h ∈ G, compute g
h = g · h−1.

Group Exponentiation. Given g ∈ G and x ∈ Zp, compute gx.

Question: Given g ∈ G, (x, y, z) ∈ Zp, do you know how to compute

g−
y−z
x+z ?

22/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Pairing Overview

Bilinear pairing maps two group elements in elliptic curve groups to
a third group element in a multiplicative group without losing its
isomorphic property.
Bilinear pairing was originally introduced to solve hard problems in
elliptic curve groups by mapping its problem instance into a
problem instance in a multiplicative group.

Bilinear pairing (G1 ×G2 → GT) falls into the following three types.
Symmetric. G1 = G2 = G. Denoted by G×G→ GT .
Asymmetric 1. G1 6= G2 with homomorphism ψ : G2 → G1.
Asymmetric 2. G1 6= G2 with no efficient homomorphism.

Note: Homomorphism might be needed in scheme construction.

23/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Symmetric Pairing (Definition)

Let PG = (G,GT , g, p, e) be a symmetric-pairing group. Here, G is an
elliptic curve group, GT is a multiplicative subgroup, |G| = |GT | = p, g is a
generator of G, and e is a map satisfying the following three properties.

For all u, v ∈ G, a, b ∈ Zp, e(ua, vb) = e(u, v)ab.

e(g, g) is a generator of group GT .

For all u, v ∈ G, there exist efficient algorithms to compute e(u, v).

24/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Symmetric Pairing (Size)

Two types of DLP:
Compute x from g and gx.

Compute x from e(g, g) and e(g, g)x.

To make sure solving any DLP takes at least 280 steps, it requires that

|g| ≥ 512(bits), |e(g, g)| ≥ 1024(bits).

Note: 1024 is just a textbook size. We need a larger parameter now.

25/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Asymmetric Pairing (Definition)

Let PG = (G1,G2, GT , g1, g2, p, e) be an asymmetric-pairing group. Here,
G1,G2 are elliptic curve groups, GT is a multiplicative subgroup,
|G1| = |G2| = |GT | = p, g1 is a generator of G1, g2 is a generator of G2,
and e is a map satisfying the following three properties.

For all u ∈ G1, v ∈ G2, a, b ∈ Zp, e(ua, vb) = e(u, v)ab.

e(g1, g2) is a generator of group GT .

For all u ∈ G1, v ∈ G2, there exist efficient algo. to compute e(u, v).

26/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Asymmetric Pairing (Size)

Three types of DLP:
Compute x from g1 and gx

1.

Compute x from g2 and gx
2.

Compute x from e(g1, g2) and e(g1, g2)x.

To make sure solving any DLP takes at least 280 steps, it requires that

|g1| ≥ 160(bits), |g2| ≥ 1024(bits), |e(g, g)| ≥ 1024(bits).

Note: We have to set |g2| = |e(g1, g2)| due to asymmetric construction.

27/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Symmetric and Asymmetric Computations Over Pairing

Basic Computations

A symmetric-pairing group is composed of groups (G,GT) of prime
order p and a bilinear map e. All computations over a pairing group are
summarized as follows.

All modular operations over Zp (prime field).

All group operations over the groups (G,GT).

The pairing computation e(u, v) for all u, v ∈ G.

Question: Given g, ga ∈ G, (x, y) ∈ Zp, do you know how to compute

e(g, g)(a+x)(a+y)?

28/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Security-Based Classification Application-Based Classification

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Security-Based Classification Application-Based Classification

Hash Functions: H(·)

A hash function takes an arbitrary-length string as an input and
returns a much shorter string as an output.

In scheme construction, we cannot embed all values into Zp or G
due to limited space. We compute gH(m) instead of gm when m /∈ Zp.

In security reduction, hash function might be set as random oracle.

Note: Most public-key cryptography schemes need a hash function.

29/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Security-Based Classification Application-Based Classification

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Security-Based Classification Application-Based Classification

One-Way and Collision-Resistant

Hash functions can be classified into the following two main types
according to the security definition.

One-Way Hash Function. Given a one-way hash function H and
an output string y, it is hard to find a pre-image input x satisfying
y = H(x).
Collision-Resistant Hash Function. Given a collision-resistant
hash function H, it is hard to find two different inputs x1 and x2
satisfying H(x1) = H(x2).

We can simply call a hash function cryptographic hash function that is
one-way hash function, or a collision-resistant hash function satisfying
applications.

30/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Security-Based Classification Application-Based Classification

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Security-Based Classification Application-Based Classification

The Space of Hashing Outputs

Hash functions can be classified into the following three types according
to the output space, where the input can be any arbitrary strings.

H : {0, 1}∗ → {0, 1}n. The output space is the set containing all n-bit
strings. We mainly use this kind of hash function to generate a
symmetric key from the key space {0, 1}n for hybrid encryption.

H : {0, 1}∗ → Zp. The output space is {0, 1, 2, · · · , p− 1}, where p is
the group order. We use this kind of hash function to embed
hashing values in group exponents such as gH(m).

H : {0, 1}∗ → G. The output space is a cyclic group. That is, this
hash function will hash the input string into a group element. This
hash function exists for some groups only.

31/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

(Pseudo)Random Number Generator (1)

In many scheme constructions, algorithms need to choose random
numbers from a space to perform computations, such as

A random n-bit string from {0, 1}n.
A random integer from Zp.
A random element from such as G.

Let x be the random variable and w1,w2 be any two possible random
numbers from the space. The action “randomly choose” means that

Pr[x = w1] = Pr[x = w2].

32/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

(Pseudo)Random Number Generator (2)

Something different here:

In scheme algorithms, algorithms can choose real random numbers
satisfying the equal probability.

In real world, algorithms could choose peudorandom numbers on
with a pseudorandom number generator.

Security reductions also assume that all chosen random numbers are
truly random.

33/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Outline
1 Finite Field

2 Cyclic Groups
Definition and Description
Easy Problem and Hard Problem
Two Group Choices
Computations Over Group

3 Bilinear Pairings
Symmetric and Asymmetric
Computations Over Pairing

4 Hash Functions
Security-Based Classification
Application-Based Classification

5 *(Pseudo)Random Number Generator

6 *Insecure Schemes

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

How to Forge Signatures

Backgroup: This lecture will give some insecure signature schemes.

The adversary is given a public key and some signatures.

The adversary is asked to forge a signature on a new message.

Questions: How to forge signature on a new message?

34/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Insecure Scheme (1)

The public key is pk = (g, gα) and the signing key is sk = α ∈ Zp.

Suppose the signature on m is defined as

σm = gα·m.

Question: How to forge a signature when given (pk,m, σm)?

35/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Insecure Scheme (2)

The public key is pk = (g, gα) and the signing key is sk = α ∈ Zp.

Suppose the signature on m is defined as

σm = gα+m.

Question: How to forge a signature when given (pk,m, σm)?

36/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Insecure Scheme (3)

The public key is pk = (g, gα, gβ) and sk = (α, β) ∈ Zp.

Suppose the signature on m is defined as

σm = α+ mβ mod p.

Question: How to forge a signature when given (pk,m1, σm1 ,m2, σm2)?

37/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Insecure Scheme (4)

The public key is pk = (g, gα, gβ) and sk = (α, β) ∈ Zp.

Suppose the signature on m is defined as

σm =
(

gαβ+mr, gr
)
,

where r is a random number chosen from Zp.

Question: How to forge a signature when given (pk,m, σm)?

38/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Insecure Scheme (5)

The public key is pk = (g, gα, gβ) and sk = (α, β) ∈ Zp.

Suppose the signature on m is defined as

σm =
(

gαβ+mr·β , gr
)
,

where r is a random number chosen from Zp.

Question: How to forge a signature when given (pk,m, σm)?

39/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

Insecure Scheme (6)

The public key is pk = (g, gα) and the signing key is sk = α ∈ Zp.

Suppose the signature on m is defined as

σm = g
1

α·m .

Question: How to forge a signature when given (pk,m, σm)?

40/41

Introduction to Security Reduction 1

Outline Finite Field Cyclic Groups Bilinear Pairings Hash Functions *(Pseudo)Random Number Generator *Insecure Schemes

41/41

https://documents.uow.edu.au/~fuchun/book.html

	Outline
	Finite Field
	Cyclic Groups
	Definition and Description
	Easy Problem and Hard Problem
	Two Group Choices
	Computations Over Group

	Bilinear Pairings
	Symmetric and Asymmetric
	Computations Over Pairing

	Hash Functions
	Security-Based Classification
	Application-Based Classification

	*(Pseudo)Random Number Generator
	*Insecure Schemes

