
Introduction to Security Reduction

My IQ is up to 186.

My interest is breaking schemes.

You want me to help you solve problem?

Fool me first!

Lecture 10: Security Proofs
(Encryption under Computational Hardness Assumption)

Introduction to Security Reduction 1

Lecture 12: Flaws in Papers
Lecture 11: Revision of Security Reduction
Lecture 10: Security Proofs for Encryption (Computational)
Lecture 9: Security Proofs for Encryption (Decisional)
Lecture 8: Security Proofs for Digital Signatures
Lecture 7: Analysis (Towards A Correct Reduction)
Lecture 6: Simulation and Solution
Lecture 5: Difficulties in Security Reduction
Lecture 4: Entry to Security Reduction
Lecture 3: Preliminaries (Hard Problem and Secure Scheme)
Lecture 2: Preliminaries (Field, Group, Pairing, and Hash Function)
Lecture 1: Definitions (Algorithm and Security Model)

Computational Complexity Theory

1/24

Introduction to Security Reduction 1

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Random and Independent Revisited

Let H be a cryptographic hash function, and x be a random input string.

If H is a cryptographic hash function, H(x) is dependent on x and
the hash function algorithm. That is, H(x) is computable from x and
the hash function H.
If H is set as a random oracle, H(x) is random and independent of
x. This is due to the fact that H(x) is an element randomly chosen
by the simulator.

In a security proof with random oracles, if the adversary doesn’t query x
to the random oracle, H(x) is random and unknown to the adversary.
This is the core of security reduction for encryption with random oracles.

3/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

One-Time Pad Revisited
Let H : {0, 1}∗ → {0, 1}n be a cryptographic hash function. We consider
the encryption of mc ∈ {m0,m1} with an arbitrary string x.

CT =
(

x, H(x)⊕ mc

)
.

If H is a hash function, the above ciphertext is not a one-time pad.
Given x and the hash function H, the adversary can compute H(x)
by itself and decrypt the ciphertext to obtain the message mc.
If H is set as a random oracle, the adversary cannot compute H(x)
by itself and must query x to the random oracle to know H(x).

Before Querying x. Since H(x) is random and unknown to the
adversary, the adversary has no advantage in guessing the message
mc except with probability 1

2 .
After Querying x. Once the adversary queries x to the random
oracle and receives the response H(x), the adversary can guess the
encrypted message with advantage 1.

4/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

One-Time Pad Revisited
Let H : {0, 1}∗ → {0, 1}n be a cryptographic hash function. We consider
the encryption of mc ∈ {m0,m1} with an arbitrary string x.

CT =
(

x, H(x)⊕ mc

)
.

If H is a hash function, the above ciphertext is not a one-time pad.
Given x and the hash function H, the adversary can compute H(x)
by itself and decrypt the ciphertext to obtain the message mc.
If H is set as a random oracle, the adversary cannot compute H(x)
by itself and must query x to the random oracle to know H(x).

Before Querying x. Since H(x) is random and unknown to the
adversary, the adversary has no advantage in guessing the message
mc except with probability 1

2 .
After Querying x. Once the adversary queries x to the random
oracle and receives the response H(x), the adversary can guess the
encrypted message with advantage 1.

4/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Solution to Hard Problem Revisited

Let H : {0, 1}∗ → {0, 1}n be a random oracle. Let X be a given problem
instance, and y be its solution. Suppose the challenge ciphertext is

CT =
(

X, H(y)⊕ mc

)
.

Suppose the adversary can break the challenge ciphertext.
The adversary must query y to the random oracle. Otherwise,
without querying y to the random oracle, CT is equivalent to a
one-time pad, which is contrary to the breaking assumption.

Therefore, the solution to the problem instance will appear in one of the
hash queries made by the adversary.

5/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Simulation of Challenge Ciphertext
Background: Suppose the challenge ciphertext in the real scheme is

CT∗ =
(

g, ga, gb,H(gab)⊕ mc

)
.

In the simulated scheme, the simulator cannot directly simulate
H(gab)⊕ mc because gab is unknown to the simulator(CDH problem).

Solution: Fortunately, this problem can be easily solved.

To be precise, the simulator chooses a random string R ∈ {0, 1}n to
replace H(y)⊕ mc. The challenge ciphertext in the simulated scheme is

CT∗ = (g, ga, gb,R).

The challenge ciphertext can be seen as an encryption of the message
mc ∈ {m0,m1} if H(y) = R⊕ mc, where we have

CT∗ = (X,R) =
(

X,H(y)⊕ mc

)
.

6/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Simulation of Challenge Ciphertext
Background: Suppose the challenge ciphertext in the real scheme is

CT∗ =
(

g, ga, gb,H(gab)⊕ mc

)
.

In the simulated scheme, the simulator cannot directly simulate
H(gab)⊕ mc because gab is unknown to the simulator(CDH problem).

Solution: Fortunately, this problem can be easily solved.

To be precise, the simulator chooses a random string R ∈ {0, 1}n to
replace H(y)⊕ mc. The challenge ciphertext in the simulated scheme is

CT∗ = (g, ga, gb,R).

The challenge ciphertext can be seen as an encryption of the message
mc ∈ {m0,m1} if H(y) = R⊕ mc, where we have

CT∗ = (X,R) =
(

X,H(y)⊕ mc

)
.

6/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Simulation of Challenge Ciphertext

CT∗ = (g, ga, gb,R).

Unfortunately, after sending this challenge ciphertext to the
adversary, the simulator may not know which hash query from the
adversary is the solution y and will respond to the query on y with a
random element different from R⊕ mc.

Therefore, the query response is wrong, and the challenge
ciphertext in the simulation is distinguishable from that in the real
scheme. The adversary finds that the challenge ciphertext is an
encryption of message not in {m0,m1}.

7/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

Simulation of Challenge Ciphertext

CT∗ = (g, ga, gb,R).

Before Querying gab. From the point of view of the adversary, the
challenge ciphertext is an encryption of m0 if H(gab) = R⊕ m0 and
an encryption of m1 if H(gab) = R⊕ m1. Without making a hash
query on y to the random oracle, the adversary never knows H(gab),
and thus has no advantage in breaking CT∗.

After Querying gab. Once the adversary makes a hash query on
gab to the random oracle, the simulation is distinguishable. However,
we don’t care because the simulator has already received the gab

from the adversary and can solve the underlying hard problem.

Definition. We denote by Q∗ the challenge hash query, if the adversary
has no advantage in guessing the encrypted message without making a
hash query on Q∗ to the random oracle.

8/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Random and Independent Revisited One-Time Pad Revisited Solution to Hard Problem Revisited Simulation of Challenge Ciphertext

A Small Summary

Indistinguishable simulation is desired in security reduction.

Without this feature, we cannot use the adversary’s attack ability.

However, we only require this property before the adversary
launches a useful attack.

Note: The encryption under decisional hardness assumption requires
IND if Z is true. It is different from the required

9/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Proof Structure Advantage Analysis

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Proof Structure Advantage Analysis

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Proof Structure Advantage Analysis

Proof Structure

Simulation. The simulator programs the random oracle simulation,
generates the simulated scheme using the received problem
instance, and interacts with the adversary.
Solution. The simulator solves the computational hard problem
with hash queries to the random oracle.
Analysis. In this part, we need to provide the following analysis.

1 The simulation is indistinguishable from the real attack if no challenge
hash query is made by the adversary.

2 The probability PS of successful simulation.
3 The adversary has no advantage in breaking the challenge ciphertext

if it doesn’t make the challenge hash query to the random oracle.
4 The probability PC of finding the correct solution from hash queries.
5 The advantage εR of solving the underlying hard problem.
6 The time cost of solving the underlying hard problem.

10/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Proof Structure Advantage Analysis

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Proof Structure Advantage Analysis

Lemma
Lemma
If the adversary has no advantage in breaking the challenge ciphertext
without querying Q∗ to the random oracle, the adversary will make the
challenge hash query to the random oracle with probability ε.
Proof. According to the breaking assumption, we have

Pr[c′ = c] =
1
2
+
ε

2
.

Let H∗ denote the event of making the challenge hash query to the
random oracle, and H∗c be the complementary event of H∗.

Pr[c′ = c|H∗] = 1, Pr[c′ = c|H∗c] = 1
2
.

Pr[c′ = c] = Pr[c′ = c|H∗] Pr[H∗] + Pr[c′ = c|H∗c] Pr[H∗c]

= Pr[H∗] +
1
2
(1− Pr[H∗]) =

1
2
+

1
2
Pr[H∗],

and deduct Pr[H∗] = ε. This completes the proof. �

11/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Proof Structure Advantage Analysis

Advantage

The advantage εR of solving the underlying computational hard problem
is defined as

εR = PS · ε · PC.

Suppose that
the simulation is successful and indistinguishable, and
the adversary has no advantage in breaking the challenge
ciphertext without making the query on Q∗.

The challenge hash query will appear in the hash list with probability ε.

Finally, the probability of picking Q∗ from the hash list is PC.

Therefore, the advantage of solving hard problem is PS · ε · PC.

12/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Proof Structure Advantage Analysis

The Probability PC

The simulator needs to pick one hash query as the challenge hash
query and extracts the solution to the problem instance from it.

The decisional variant of the computational hard problem is hard.
The simulator cannot verify which hash query is the correct one. It
has to randomly pick one of the hash queries as the challenge hash
query. We have PC = 1/qH.
The decisional variant of the computational hard problem is easy.
The simulator can verify which hash query is the challenge hash
query. The reason is that the simulator can test all the hash queries
one by one until it finds the challenge hash query. We have PC = 1.

13/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Simulation of Decryption

In a security reduction for an encryption scheme under a decisional
hardness assumption,

the decryption simulation must be indistinguishable from the real
attack if Z is true, and
the decryption simulation must not help the adversary break the
false challenge ciphertext if Z is false.

However, the requirements of the decryption simulation for this type of
security reduction are slightly different because there is no Z.

14/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Simulation of Decryption

Requirements on Decryption Simulation:
Before the adversary makes a challenge hash query, we

require indistinguishable simulation.

After the adversary makes a challenge hash query, we
don’t care any simulation result!

Note: what do we need to achieve indistinguishable decryption
simulation?

15/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Simulation of Decryption

Requirements on Indistinguishable Decryption Simulation:
If a ciphertext is generated and is independent of the challenge
ciphertext, it will be accepted or rejected the same as the real
scheme.

If a ciphertext is generated or modified from the challenge
ciphertext, it will be rejected the same as the real scheme.

Note: The challenge ciphertext in the simulated scheme is a fake
ciphertext (X,R) while in the real scheme is a real ciphertext
(X,H(y)⊕ mc). They are different and cannot be distinguished. We
simply require the scheme to reject any ciphertext modified from the
challenge ciphertext.

16/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Decryption Simulation Without Key

In this type of security reduction, the challenge decryption key is
usually programmed as a key unknown to the simulator.
We use the help of random oracle in the decryption simulation.
Namely, any input to hash must be queried.

The key pair is pk = (g, g1,H) and sk = α, where g1 = gα.

The encryption algorithm chooses a random r ∈ Zp and computes:

CT = (C1,C2,C3) =
(

gr, H(0||gr
1)⊕ r, H(1||gr

1)⊕ m
)
.

This encryption scheme is not IND-CCA secure but IND-CCA1 secure.

Question: How to simulate decryption when α is unknown.

17/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Decryption Simulation Without Key

Answer is given in the next page.

18/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Decryption Simulation Without Key

CT = (C1,C2,C3) =
(

gr, H(0||gr
1)⊕ r, H(1||gr

1)⊕ m
)
.

A queried ciphertext CT is valid if and only if CT can be re-created with
the decrypted random number r′ and the decrypted message m′.

That is, (
gr′ , H(0||gr′

1)⊕ r′, H(1||gr′
1)⊕ m′

)
= CT.

Observation: Without querying 0||gr
1 to the random oracle, the adversary

cannot correctly compute C2 even the adversary knows r.

The simulator uses the queried 0||gr
1 to decrypt ciphertext and verify it.

19/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Decryption Simulation Without Key

CT = (C1,C2,C3) =
(

gr, H(0||gr
1)⊕ r, H(1||gr

1)⊕ m
)
.

Suppose (x1, y1), (x2, y2), · · · , (xq, yq) are in the hash list, where x, y
denote a query and a response, respectively. If CT is a valid ciphertext,
one of the hash queries must be equal to 0||gr

1. Otherwise, the
ciphertext is invalid.

For all i ∈ [1, q], it starts with i = 1 and computes r′ = y1 ⊕ C2.
It uses r′ to decrypt the message m′ by computing H(1||gr′

1)⊕ C3.
It checks whether the ciphertext CT can be re-created with (r′,m′).
If yes, the simulator returns message m′. Otherwise, the simulator
sets i = i + 1 and repeats the above procedure.

If all yi cannot decrypt the ciphertext correctly, the simulator outputs ⊥ as
the decryption result on the queried ciphertext CT. That is, CT is invalid.

20/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Decryption Simulation Without Key

Firstly, we can use hash queries instead of the challenge decryption
key to simulate the decryption. A ciphertext is valid if and only if the
adversary ever made the correct hash query to the random oracle.
This condition is necessary if the simulator is to simulate the
decryption correctly. (Inputs to random oracle are set as trapdoor)

Secondly, there should be a mechanism for checking which hash
query is the correct hash query for a decryption. Otherwise, given a
ciphertext for a decryption query, the simulator might return many
distinct results depending on the used hash queries.

21/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Outline

1 Random Oracle in Applications
Random and Independent Revisited
One-Time Pad Revisited
Solution to Hard Problem Revisited
Simulation of Challenge Ciphertext

2 Proof Structure
Proof Structure
Advantage Analysis

3 CCA Security

4 Summary

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Summary

A correct security reduction for a public-key encryption scheme under a
computational hardness assumption must satisfy the conditions.

The underlying hard problem is a computational problem.
The simulator doesn’t know the secret key.
The simulator can simulate the decryption for CCA security.
The probability of successful simulation is non-negligible.
Without making the challenge hash query Q∗, the adversary cannot
distinguish the simulated scheme from the real scheme and has no
advantage in breaking the challenge ciphertext.
The simulator uses Q∗ to solve the hard problem.
The advantage εR of solving the hard problem is non-negligible.
The time cost of the simulation is polynomial time.

22/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

Have a Try?

KeyGen: The key generation algorithm randomly chooses α ∈ Zp,
computes g1 = gα, and returns a public/secret key pair (pk, sk) as follows:

pk = (g, g1,H), sk = α.

Encrypt: The encryption algorithm takes as input a message m ∈ {0, 1}n,
the public key pk, and the system parameters SP. It chooses a random
number r ∈ Zp and returns the ciphertext CT as

CT = (C1,C2) =
(

gr, H(gr
1)⊕ m

)
.

Decrypt: The decryption algorithm takes as input a ciphertext CT, the
secret key sk, and the system parameters SP. Let CT = (C1,C2). It decrypts

C2 ⊕ H(Cα
1) = H(gr

1)⊕ m⊕ H
(
gαr) = m.

It is secure in IND-CPA security model under CDH assumption.

23/24

Introduction to Security Reduction 1

Outline Random Oracle in Applications Proof Structure CCA Security Summary

24/24

https://documents.uow.edu.au/~fuchun/book.html

	Random Oracle in Applications
	Random and Independent Revisited
	One-Time Pad Revisited
	Solution to Hard Problem Revisited
	Simulation of Challenge Ciphertext

	Proof Structure
	Proof Structure
	Advantage Analysis

	CCA Security
	Summary

