A DUAL GRAPH CONSTRUCTION FOR HIGHER-RANK GRAPHS, AND \(K \)-THEORY FOR FINITE 2-GRAPHS

STEPHEN ALLEN, DAVID PASK, AND AIDAN SIMS

Abstract. Given a \(k \)-graph \(\Lambda \) and an element \(p \) of \(\mathbb{N}^k \), we define the dual \(k \)-graph, \(p\Lambda \). We show that when \(\Lambda \) is row-finite and has no sources, the \(C^* \)-algebras \(C^*(\Lambda) \) and \(C^*(p\Lambda) \) coincide. We use this isomorphism to apply Robertson and Steger’s results to calculate the \(K \)-theory of \(C^*(\Lambda) \) when \(\Lambda \) is finite and strongly connected and satisfies the aperiodicity condition.

1. Introduction

In 1980, Cuntz and Krieger introduced a class of \(C^* \)-algebras, now called Cuntz-Krieger algebras, associated to finite \(\{0,1\} \)-matrices \(A \) [4]. Enomoto and Watatani then showed that these algebras could be regarded as being associated in a natural way to finite directed graphs by regarding \(A \) as the vertex adjacency matrix of a finite directed graph \(E \) [5]. Generalising this association, Enomoto and Watatini associated \(C^* \)-algebras \(C^*(E) \) to finite graphs \(E \) with no sources\(^1 \) (\(E \) has no sources if each vertex of \(E \) is the range of at least one edge). Although not every finite directed graph with no sources has a vertex adjacency matrix with entries in \(\{0,1\} \), the vertex adjacency matrix of the dual graph \(\hat{E} \) formed by regarding the edges of \(E \) as vertices and the paths of length 2 in \(E \) as edges does always have entries in \(\{0,1\} \), and the Cuntz-Krieger algebras associated to \(E \) and to \(\hat{E} \) are canonically isomorphic [11]. These results have since been extended to infinite graphs (see for example [10, 9, 3, 7]; see also [2] when \(E \) has sources).

One of the major attractions of graph algebras is their applicability to the classification program for simple purely infinite nuclear \(C^* \)-algebras. Conditions on a graph \(E \) have been identified which guarantee that \(C^*(E) \) is purely infinite, simple, and nuclear, and satisfies the Universal Coefficient Theorem (see, for example, [3]), thus producing a large class of directed graphs whose \(C^* \)-algebras are determined up to isomorphism by their \(K \)-theory [12]. The \(K \)-theory of \(C^*(E) \) for an arbitrary directed graph \(E \) was calculated in [13], and it is shown in [17] that given any two finitely generated abelian groups \(G, H \) such that \(H \) is torsion-free, there exists a directed graph \(E \) such that \(C^*(E) \) is simple, purely infinite, nuclear, and satisfies the Universal Coefficient Theorem, with \(K_0(C^*(E)) \cong G \) and \(K_1(C^*(E)) \cong H \).

\(^{1}\)For the sake of consistency with \(k \)-graph notation, we regard directed graphs as 1-graphs, so no sources here corresponds to no sinks in, for example, [5, 3]

\textbf{1991 Mathematics Subject Classification.} Primary 46L05.
\textbf{Key words and phrases.} Graphs as categories, graph algebra, \(C^* \)-algebra, \(K \)-theory.

This research was supported by the Australian Research Council.
In 1999, Robertson and Steger introduced a class of higher-rank Cuntz-Krieger algebras \(\mathcal{A} \), associated to collections \(M_1, \ldots, M_k \) of commuting \(\{0,1\}\)-matrices satisfying appropriate compatibility conditions \([15]\). In \([16]\), they went on to calculate the \(K \)-theory of \(\mathcal{A} \), demonstrating in particular that \(K_1(\mathcal{A}) \) need not be torsion-free, so that the class of higher-rank Cuntz-Krieger algebras exhausts some \(K \)-invariants which are not achieved by graph algebras. In order to place these higher-rank Cuntz-Krieger algebras in a graph-theoretic setting, and to generalise them as Watatani and Enomoto had generalised the original Cuntz-Krieger algebras, Kumjian and Pask introduced the notion of a higher-rank graph \(\Lambda \), and defined and investigated the associated higher-rank graph \(C^* \)-algebra \(C^*(\Lambda) \) \([8]\).

Connectivity in a rank-\(k \) graph \(\Lambda \) is described in terms of \(k \) commuting vertex adjacency matrices \(\{M^{\Lambda}_1, \ldots, M^{\Lambda}_k\} \), called coordinate matrices. Just as in the rank-1 setting, not every \(k \)-graph has coordinate matrices with entries in \(\{0,1\} \), but if \(\Lambda \) is a \(k \)-graph whose coordinate matrices are \(\{0,1\}\)-matrices, then \([8, \text{Corollary 3.5}(ii)]\) shows that \(C^*(\Lambda) \) and the \(C^* \)-algebra \(\mathcal{A} \) associated to the coordinate matrices as in \([15]\) are identical.

In this paper we introduce a notion of a dual graph for higher-rank graphs, and show that for a large class of higher-rank graphs \(\Lambda \), the dual higher-rank graph \(p\Lambda \) and the original higher-rank graph \(\Lambda \) have canonically isomorphic \(C^* \)-algebras for all \(p \in \mathbb{N}^k \) (c.f. \([1]\)). We also show that by choosing \(p \) appropriately, we can ensure that \(p\Lambda \) has coordinate matrices with entries in \(\{0,1\} \). Using these results, we identify a class of finite rank-2 graphs whose \(C^* \)-algebras are isomorphic to the rank-2 Cuntz-Krieger algebras studied by Robertson and Steger, and we use the results of \([16]\) to show that these \(C^* \)-algebras are purely infinite, simple, unital and nuclear, and to calculate their \(K \)-theory.

The layout of the paper is as follows: in Section 2, we recall the definition of \(k \)-graphs and the associated notation; in Section 3, we introduce the dual graph construction for \(k \)-graphs, and show that this construction preserves the associated \(C^* \)-algebra; and in Section 4, we identify the finite 2-graphs \(\Lambda \) whose \(C^* \)-algebras can be studied using Robertson and Steger’s results, and use these results to calculate \(K_* (C^*(\Lambda)) \).

In the final stages of preparation of this paper, the authors became aware of Evans’ Ph.D. thesis \([6]\), which appears to obtain more general results regarding \(K \)-theory for 2-graph \(C^* \)-algebras than those established here. The authors thank the referee for helpful comments which we feel have improved the exposition.

2. Preliminaries

We regard \(\mathbb{N}^k \) as an additive semigroup with identity 0. Given \(m, n \in \mathbb{N}^k \), we write \(m \vee n \) for their coordinate-wise maximum and \(m \wedge n \) for their coordinate-wise minimum, and if \(m \leq n \), then we write \([m, n]\) for the set \(\{p \in \mathbb{N}^k : m \leq p \leq n\} \). We denote the canonical generators of \(\mathbb{N}^k \) by \(\{e_1, \ldots, e_k\} \), and for \(n \in \mathbb{N}^k \), we write \(n_j \) for the \(j^{\text{th}} \) coordinate of \(n \).

Definition 2.1. Let \(k \in \mathbb{N} \setminus \{0\} \). A \(k \)-graph is a pair \((\Lambda, d) \) where \(\Lambda \) is a countable category and \(d \) is a functor from \(\Lambda \) to \(\mathbb{N}^k \) which satisfies the factorisation property: if \(\lambda \in \text{Mor}(\Lambda) \) and \(d(\lambda) = m + n \), then there are unique morphisms \(\mu \in d^{-1}(m) \) and \(\nu \in d^{-1}(n) \) such that \(\lambda = \mu \nu \).
We refer to elements of $\text{Mor}(\Lambda)$ as paths and to elements of $\text{Obj}(\Lambda)$ as vertices and we write r and s for the codomain and domain maps. The factorisation property allows us to identify $\text{Obj}(\Lambda)$ with $\{\lambda \in \text{Mor}(\Lambda) : d(\lambda) = 0\}$. So we write $\lambda \in \Lambda$ in place of $\lambda \in \text{Mor}(\Lambda)$, and when $d(\lambda) = 0$, we regard λ as a vertex of Λ.

Given $\lambda \in \Lambda$ and $E \subseteq \Lambda$, we define $\lambda E = \{\lambda \mu : \mu \in E, r(\mu) = s(\lambda)\}$ and $E\lambda = \{\mu \lambda : \mu \in E, s(\mu) = r(\lambda)\}$. In particular if $d(\nu) = 0$, then ν is a vertex of Λ and $vE = \{\lambda \in E : r(\lambda) = v\}$; similarly, $Ev = \{\lambda \in \Lambda : s(\lambda) = v\}$. We write Λ^n for the collection $\{\lambda \in \Lambda : d(\lambda) = n\}$.

Definition 2.2. We say that a k-graph (Λ, d) is row-finite if $v\Lambda^n$ is finite for all $v \in \Lambda^0$ and $n \in \mathbb{N}^k$, and that Λ has no sources if $\nu\Lambda^n$ is nonempty for all $v \in \Lambda^0$ and $n \in \mathbb{N}^k$. We say that Λ is strongly connected if $\nu\Lambda^\omega$ is nonempty for all $v, w \in \Lambda^0$, and we say that Λ is finite if Λ^0 and each Λ^ω are finite.

The factorisation property ensures that if $l \leq m \leq n \in \mathbb{N}^k$ and if $d(\lambda) = n$, then there exist unique paths denoted $\lambda(0, l)$, $\lambda(l, m)$ and $\lambda(m, n)$ such that $d(\lambda(0, l)) = l$, $d(\lambda(l, m)) = m - l$, and $d(\lambda(m, n)) = n - m$ and such that $\lambda = \lambda(0, l)\lambda(l, m)\lambda(m, n)$.

Given $k \in \mathbb{N} \setminus \{0\}$, and k-graphs (Λ_1, d_1) and (Λ_2, d_2), we call a covariant functor $x : \Lambda_1 \to \Lambda_2$ a graph morphism if it satisfies $d_2 \circ x = d_1$.

Definition 2.3. As in [8], given $k \in \mathbb{N} \setminus \{0\}$, we write Ω_k for the k-graph given by

$$\text{Obj}(\Omega_k) = \mathbb{N}^k, \text{Mor}(\Omega_k) = \{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \leq n\},$$

so that $\lambda(0, l)$, $\lambda(l, m)$ and $\lambda(m, n)$ such that $d(\lambda(0, l)) = l$, $d(\lambda(l, m)) = m - l$, and $d(\lambda(m, n)) = n - m$ and such that $\lambda = \lambda(0, l)\lambda(l, m)\lambda(m, n)$.

Given $k \in \mathbb{N} \setminus \{0\}$, and k-graphs (Λ_1, d_1) and (Λ_2, d_2), we call a covariant functor $x : \Lambda_1 \to \Lambda_2$ a graph morphism if it satisfies $d_2 \circ x = d_1$.

Definition 2.4. Let (Λ, d) be a row-finite k-graph with no sources. A Cuntz-Krieger Λ-family is a collection $\{t_\lambda : \lambda \in \Lambda\}$ of partial isometries satisfying

1. $\{t_\lambda : \lambda \in \Lambda^0\}$ is a collection of mutually orthogonal projections;
2. $t_\lambda t_\mu = t_{\lambda\mu}$ whenever $s(\lambda) = r(\mu)$;
3. $t_{\lambda}^* t_{\lambda} = t_{s(\lambda)}$ for all $\lambda \in \Lambda$; and
4. $t_\lambda = \sum_{\nu \in \text{Vol} \lambda} t_{\nu}\lambda$ for all $\nu \in \Lambda^0$ and $n \in \mathbb{N}^k$.

The Cuntz-Krieger algebra $C^*(\Lambda)$ is the C^*-algebra generated by a Cuntz-Krieger Λ-family $\{s_\lambda : \lambda \in \Lambda\}$ which is universal in the sense that for every Cuntz-Krieger Λ-family $\{t_\lambda : \lambda \in \Lambda\}$ there is a unique homomorphism π of $C^*(\Lambda)$ satisfying $\pi(s_\lambda) = t_\lambda$ for all $\lambda \in \Lambda$.

3. Dual Higher Rank Graphs

In this section we define the higher rank analog $p\Lambda$ of the dual graph construction for directed graphs.

Definition 3.1. Let (Λ, d) be a k-graph and let $p \in \mathbb{N}^k$. Let $p\Lambda = \{\lambda \in \Lambda : d(\lambda) \geq p\}$. Define range and source maps on $p\Lambda$ by $r_p(\lambda) = \lambda(0, p)$, and $s_p(\lambda) = \lambda(e(d(\lambda) - p, d(\lambda)))$ for all $\lambda \in p\Lambda$, and define composition by $\lambda_2 \circ_p \lambda_1 = \lambda_2(0, d(\lambda_1) - p)\mu$ whenever $s_p(\lambda_1) = r_p(\lambda_2)$. Finally, define a degree map d_p on $p\Lambda$ by $d_p(\lambda) = d(\lambda) - p$ for all $\lambda \in p\Lambda$.

Proposition 3.2. Let (Λ, d) be a k-graph, and let $p \in \mathbb{N}^k$. Then $(p\Lambda, d_p)$ is a k-graph.
Proof. It is straightforward to check that $p\Lambda$ is a category with the indicated operations. If $\lambda, \mu \in p\Lambda$ and $s_\gamma(\lambda) = r_\nu(\mu)$, then $\lambda \circ_p \mu = \lambda\mu(p, d(\mu))$ by definition, so $d_\rho(\lambda \circ_p \mu) = d(\lambda) + d(\mu) - 2p = d_\rho(\lambda) + d_\rho(\mu)$. So d_ρ is a functor from $p\Lambda$ to \mathbb{N}^k.

We need to check that the factorisation property holds for $p\Lambda$. Take any $\lambda \in p\Lambda$ and $m, n \in \mathbb{N}^k$ with $m + n = d_\rho(\lambda)$, so $d(\lambda) = m + p + n$. By the factorisation property for Λ we have $\lambda = \lambda(0, m)\lambda(m, m + p)\lambda(m + p, m + n)$. But then $\lambda = (\lambda(0, m)\lambda(m, m + p)) \circ_p (\lambda(m, m + p)\lambda(m + p, m + n))$ in $p\Lambda$, and $d_\rho(\lambda(0, m)\lambda(m, m + p)) = m$ and $d_\rho(\lambda(m, m + p)\lambda(m + p, m + n)) = n$. This decomposition is unique by the factorisation property for Λ. □

Remark 3.3. If Λ has no sources, then $p\Lambda$ has no sources, and if Λ is row-finite, then $p\Lambda$ is row-finite.

Proposition 3.4. Let (Λ, d) be a k-graph, and let $p, q \in \mathbb{N}^k$. Then $q(p\Lambda) = (q+p)\Lambda$.

Proof. By definition, we have $q(p\Lambda)^n = (p\Lambda)^{(n+q)} = \Lambda^{(n+q+p)} = (q+p)\Lambda^n$ for all $n \in \mathbb{N}$. Hence $q(p\Lambda)$ and $(q+p)\Lambda$ have identical elements. For the remainder of the proof, we write $s_q^{p\Lambda}, r_q^{p\Lambda}, \lambda_q^{p\Lambda}$, and $d_q^{p\Lambda}$ for the source, range, composition and degree maps of the dual graph $q(p\Lambda)$.

Fix $\lambda \in \Lambda^{n+p+q}$. We have $s_{q+p}(\lambda) = \lambda(n, n+p+q)$ by definition, while $s_q^{p\Lambda}(\lambda)$ is the final segment μ of λ such that $d(\mu) - p = d_\rho(\mu) = q$; that is $d(\mu) = p + q$. Hence $s_{p+q}(\lambda) = s_q^{p\Lambda}(\lambda)$. Similarly, $r_{p+q}(\lambda) = \lambda(0, p + q) = r_q^{p\Lambda}(\lambda)$. Moreover, $d_{p+q}(\lambda) = d(\lambda) - (p + q) = d_\rho(\lambda) - q = d_q^{p\Lambda}(\lambda)$. Since λ was arbitrary, it follows that the range, source, and degree maps for $(p+q)\Lambda$ and $q(p\Lambda)$ agree.

This established, we have $r_{p+q}(\lambda) = s_{p+q}(\mu)$ if and only if $r_q^{p\Lambda}(\lambda) = s_q^{p\Lambda}(\mu)$, in which case both $\lambda \circ_p \mu$ and $\lambda \circ_q p\Lambda$ are equal to $\lambda\mu(p + q, d(\mu))$ by definition, completing the proof. □

Theorem 3.5. Let (Λ, d) be a row-finite k-graph with no sources, and let $p \in \mathbb{N}^k$. Let $\{s_\lambda : \lambda \in \Lambda\}$ denote the universal generating Cuntz-Krieger Λ-family in $C^*(\Lambda)$, and let $\{t_\lambda : \lambda \in \Lambda\}$ be the universal generating Cuntz-Krieger $p\Lambda$-family in $C^*(p\Lambda)$. For all $\lambda \in p\Lambda$, define $r_\lambda = s_\lambda s_{p\Lambda}^*(\lambda)$: There is an isomorphism $\phi : C^*(p\Lambda) \to C^*(\Lambda)$ such that $\phi(t_\lambda) = r_\lambda$ for all $\lambda \in p\Lambda$.

Proof. First we show that the family $\{r_\lambda : \lambda \in p\Lambda\}$ is a Cuntz-Krieger $p\Lambda$-family. Since, for any $\beta \in p\Lambda^0$, we have $s_{\beta} \neq 0$ it follows that $r_{\beta} = s_{\beta}s_{p\Lambda}^* \neq 0$ and that it is a projection in $C^*(\Lambda)$. Furthermore, for distinct $\alpha, \beta \in p\Lambda^0$, we have

$$r_\alpha r_\beta = s_\alpha s_{p\Lambda}^* s_\beta = \delta_{\alpha, p\Lambda} s_{p\Lambda} = \delta_{\alpha, p\Lambda} r_\alpha.$$

This establishes relation (i).

For relation (ii), let $\mu, \nu \in p\Lambda$ with $r_\mu(\nu) = s_\nu(\mu)$, so $\mu \circ_p \nu = \mu\nu(p, d(\nu))$. Then,

$$r_{\mu \circ_p \nu} = s_{\mu \circ_p \nu} s_{p\Lambda}^*(\mu \circ_p \nu) = s_\mu s_{\nu(p, d(\nu))} s_{p\Lambda}^*(\nu) = s_\mu s_{p\Lambda}^*(\nu) s_{p\Lambda}^*(\nu) = r_\mu r_\nu.$$

But $s_\mu(\nu) = r_\mu(\nu) = \nu(0, p)$, so we can rewrite the right-hand side of (3.1) to obtain

$$r_{\mu \circ_p \nu} = s_{\mu} s_{p\Lambda}^*(\nu) = r_\mu r_\nu.$$

This establishes relation (ii).

Let $\lambda \in p\Lambda$, say $d_\rho(\lambda) = n$. Then $r_\lambda s_{p\Lambda} = s_{p\Lambda}(\lambda) s_{p\Lambda} s_{p\Lambda}(\lambda) = s_{p\Lambda}(\lambda) s_{p\Lambda}(\lambda) = r_\lambda s_{p\Lambda}$ by definition, establishing relation (iii).

Finally, for relation (iv), let $\beta \in p\Lambda^0$ and let $n \in \mathbb{N}^k$. Then

$$r_\beta = s_\beta s_{p\Lambda}^* = \sum_{\gamma \in s(\beta)p\Lambda^0} s_{\gamma} s_{p\Lambda}^* = \sum_{\lambda \in p\Lambda^0} s_{\lambda} s_{p\Lambda}^*.$$
Applying the factorisation property and relation (ii) for \(C^*(\Lambda) \) to the right-hand side then gives

\[
r_\beta = \sum_{\lambda \in \beta \Lambda^s} s_{\lambda(0,n)} s_{\lambda(n,n+p)}^* s_{\lambda(n,n+p)}^* s_{\lambda(n,n+p)} s_{\lambda(0,n)},
\]

and then since each \(s_{\lambda(n,n+p)} s_{\lambda(n,n+p)}^* \) is a projection, we obtain

\[
r_\beta = \sum_{\lambda \in \beta \Lambda^s} (s_{\lambda(0,n)} s_{\lambda(n,n+p)} s_{\lambda(n,n+p)}^*) (s_{\lambda(n,n+p)} s_{\lambda(n,n+p)}^* s_{\lambda(n,n+p)} s_{\lambda(0,n)}) = \sum_{\lambda \in \beta(p\Lambda^n)} r_\lambda r_\lambda^*,
\]

which establishes relation (iv).

It follows from the universal property of \(C^*(p\Lambda) \) that there exists a homomorphism \(\phi : C^*(p\Lambda) \to C^*(\Lambda) \) satisfying \(\phi(t_\lambda) = r_\lambda \) for all \(\lambda \in p\Lambda \). We claim that \(\{t_\lambda : \lambda \in p\Lambda\} \) generates \(C^*(\Lambda) \). To see this, let \(\sigma \in \Lambda \) with \(d(\sigma) = n \). An application of relation (iv) for \(C^*(\Lambda) \) gives \(s_\sigma = \sum_{p \in \sigma(\Lambda)^p} s_{\sigma} s_{\sigma}^* = \sum_{p \in \sigma(\Lambda)^p} s_{\lambda} s_{\lambda}^* \), and this last is equal to \(\sum_{\lambda \in \sigma(\Lambda)^n} r_\lambda \), by definition. Thus \(\phi \) maps \(C^*(p\Lambda) \) onto \(C^*(\Lambda) \).

Now let \(\gamma^\Lambda \) denote the gauge action on \(C^*(\Lambda) \), and let \(\gamma^\Lambda \) denote the gauge action on \(C^*(p\Lambda) \). For \(z \in \mathbb{T}^\Lambda \) and \(\lambda \in p\Lambda \), we have

\[
\gamma^\Lambda_z(r_\lambda) = \gamma^\Lambda_z(s_{\lambda} s_{\lambda}^*(\Lambda)) = z^d(\lambda) s_{\lambda} (z^d(s_{\lambda}^*(\Lambda)))^* = z^d(\lambda)^{-1} r_\lambda = \gamma^\Lambda(r_\lambda).
\]

Theorem 3.4 of [8] now establishes that \(\phi \) is injective. \(\square \)

Remark 3.6. The hypotheses that \(\Lambda \) be row-finite and have no sources are crucial in Theorem 3.5. To see why, notice that for \(v \in \Lambda^0 \), the generator \(s_v \) of \(C^*(\Lambda) \) is recovered in \(C^*(p\Lambda) \) as \(\sum_{\beta \in \Lambda^p, r(\beta) = v} r_\beta \). However, even for 1-graphs the Cuntz-Krieger relations only insist that \(p_v = \sum_{r(\beta) = v} s_{\beta} s_{\beta}^* \) when \(r^{-1}(v) \) is finite and nonempty.

Lemma 3.7. Let \((\Lambda, d)\) be a k-graph, and let \(p \in \mathbb{N}^k \). For each \(n \in \mathbb{N} \) with \(n \leq p \) and \(v, w \in p\Lambda^0 \), there is at most one \(\lambda \in v(p\Lambda^n)w \).

Proof. Let \(v, w \in p\Lambda^0 = \Lambda^p \) and suppose \(\lambda \in v(p\Lambda^n)w \). Then \(\lambda \in \Lambda^{n+p}, \lambda(0, p) = v \), and \(\lambda(n, n + p) = w \). Since \(n \leq p \) we have \(\lambda(0, n) = \{\lambda(0, p)\}(0, n) = v(0, n) \), so \(\lambda = \lambda(0, n) \lambda(n, n + p) = v(0, n)w \), and hence is determined by \(v \) and \(w \). \(\square \)

Notation 3.8. Let \((\Lambda, d)\) be a k-graph. We write \(M^\Lambda_i \), \(1 \leq i \leq k \) for the matrices in \(M_{\Lambda^0}(\mathbb{N}) \) defined by \((M^\Lambda_i)_{v, w} = |v\Lambda^e w| \) for \(v, w \in \Lambda^0 \), and we refer to these matrices as the coordinate matrices of \(\Lambda \).

Remark 3.9. In [8, 6] \((M^\Lambda)_{v, w} = |v\Lambda^e w| \), so our \(M^\Lambda \) is the transpose of theirs. This is for consistency with the matrices in [16, 15]; we will be employing Robertson and Steger’s results to calculate \(K \)-theory in Section 4.

Corollary 3.10. Let \((\Lambda, d)\) be a k-graph, and let and \(p \in \mathbb{N}^k \) with \(p_i \geq 1 \) for \(1 \leq i \leq k \). Then the coordinate matrices \(M^\Lambda_i \) of \(p\Lambda \) are \(\{0, 1\} \)-matrices.

4. \(K \)-theory

In this section we identify a class of 2-graphs whose associated \(C^* \)-algebras are isomorphic to higher rank Cuntz-Krieger algebras in the sense of [16], and use the results of [16] to calculate the \(K \)-theory of the \(C^* \)-algebras of such 2-graphs. To state the main theorem for this section we employ the following notation: given square \(n \times n \) matrices \(M, N \), we write \([M \quad N] \) for the block \(n \times 2n \) matrix whose first \(n \) columns are those of \(M \) and whose last \(n \) columns are those of \(N \). We also write \(1 \) for the element \((1, 1)\) of \(\mathbb{N}^2 \).
Theorem 4.1. Let (Λ, d) be a 2-graph which is finite and strongly connected as in Definition 2.2 and which has an aperiodic infinite path as in Definition 2.3. Then $C^*(\Lambda)$ is purely infinite, simple, unital and nuclear, and we have

$$\text{rank}(K_0(C^*(\Lambda))) = \text{rank}(\text{coker} \left[I - M_1^{1\Lambda} \right. I - M_2^{1\Lambda} \left. \right])$$

$$+ \text{rank}(\text{coker} \left[I - (M_1^{1\Lambda})^t \quad I - (M_2^{1\Lambda})^t \right]);$$

$$\text{tor}(K_0(C^*(\Lambda))) \cong \text{tor}(\text{coker} \left[I - M_1^{1\Lambda} \quad I - M_2^{1\Lambda} \right]); \text{ and}$$

$$\text{tor}(K_1(C^*(\Lambda))) \cong \text{tor}(\text{coker} \left[I - (M_1^{1\Lambda})^t \quad I - (M_2^{1\Lambda})^t \right]).$$

The remainder of this section constitutes the proof of Theorem 4.1. We begin by recalling some definitions from [16]. Let A be a finite set, and let M_1, M_2 be $A \times A$ matrices with entries in $\{0, 1\}$. For $n \in \mathbb{N}^+$, let $W_n = \{w : [0, n] \rightarrow A : M_j(w(l + e_j), w(l)) = 1 \text{ whenever } l, l + e_j \in [0, n]\}$; we refer to the elements of W_n as allowable words of shape n, and write W for the collection $\bigcup_{n \in \mathbb{N}^2} W_n$ of all allowable words. For $u \in W$, write $S(u)$ for the shape of u; that is, $S(u)$ is the unique element of \mathbb{N}^2 such that $u \in W_{S(u)}$. We identify W_0 with A. The matrices M_1, M_2 are said to satisfy (H0)–(H3) if

(H0) Each M_i is nonzero;

(H1a) $M_1 M_2 = M_2 M_1$;

(H1b) $M_1 M_2$ is a $\{0, 1\}$-matrix;

(H2) the directed graph with a vertex for each $a \in A$ and a directed edge (a, i, b) from a to b for each a, i, b such that $M_i(b, a) = 1$ is irreducible; and

(H3) for each $m \in \mathbb{Z}^2 \setminus \{0\}$, there exists a word $w \in W$ and elements l_1, l_2 of \mathbb{N} such that $l_2 - l_1 = m$ and $w(l_1) \neq w(l_2)$.

Notation 4.2. If (Λ, d) is a 2-graph such that the coordinate matrices M_1^Λ and M_2^Λ are $\{0, 1\}$-matrices, we write W_Λ and W^Λ for the collection of allowable words of shape n and for the collection of all allowable words respectively. For $\lambda \in \Lambda$, let w_λ be the word in $W_{\delta(\lambda)}$ given by $w_\lambda(m) = s(\lambda(0, m))$ for $0 \leq m \leq d(\lambda)$. Since each M_i^Λ is a $\{0, 1\}$-matrix, the map $\lambda \mapsto w_\lambda$ is a bijection between Λ^n and W_Λ for all $n \in \mathbb{N}$.

Proposition 4.3. Let (Λ, d) be a finite 2-graph with no sources, and let $M_1^{1\Lambda}$ and $M_2^{1\Lambda}$ be the matrices associated to 1Λ. Then

1. $M_1^{1\Lambda}, M_2^{1\Lambda}$ satisfy (H0), (H1a), and (H1b);

2. $M_1^{1\Lambda}, M_2^{1\Lambda}$ satisfy (H2) if and only if Λ is strongly connected; and

3. if $M_1^{1\Lambda}, M_2^{1\Lambda}$ satisfy (H2), then they satisfy (H3) if and only if Λ has an aperiodic infinite path.

Proof. For (1), note that each $M_i^{1\Lambda}$ is a finite square matrix over $1\Lambda^0$ by definition, and has entries in $\{0, 1\}$ by Corollary 3.10. It is easy to see that

$$(M_i^{1\Lambda} M_3^{1\Lambda})_{\alpha, \beta} = |\{(\alpha, \beta) \in w(1\Lambda^{e_3 \cdots e_1}) \times (1\Lambda^{e_1}) : r(\alpha) = s(\beta)\}| = |w(1\Lambda^1)_{\alpha}|$$

for $i = 1, 2$, which establishes (H1a) and, when combined with Lemma 3.7, (H1b).

For (2), notice that $M_1^{1\Lambda}, M_2^{1\Lambda}$ satisfy (H2) if and only if for every $w \in 1\Lambda^0$ there exist elements $\alpha_1, \ldots, \alpha_k$ in $1\Lambda^{(1, 0)} \cup 1\Lambda^{(0, 1)}$ such that $r(\alpha_1) = \alpha, s(\alpha_k) = w$, and $r(\alpha_{i+1}) = s(\alpha_i)$ for $1 \leq i \leq k - 1$.
So suppose first that $M_{1}^{1\Lambda}, M_{2}^{1\Lambda}$ satisfy (H2), and let $v, w \in \Lambda^0$. Since Λ has no sources, there exist $\mu, \nu \in \Lambda^1$ with $r(\mu) = v$ and $r(\nu) = w$; so $\mu, \nu \in \Lambda^0$ by definition, and (H2) ensures that there is a path $\alpha_1 \ldots \alpha_k$ in $\Lambda^{1(0)} \cup \Lambda^{0(1)}$ with $r_1(\alpha_1) = \mu$ and $s_1(\alpha_k) = \nu$. By definition of Λ, the path $\alpha_1 \ldots \alpha_k$ in Λ is a path $\lambda \in \Lambda$ with $d(\lambda) = d_1(\alpha_1 \ldots \alpha_k) + 1$, and such that $\lambda(0, 1) = \mu$ and $\lambda(d(\lambda) - 1, d(\lambda)) = \nu$. But then $\lambda(0, d(\lambda) - 1) \in v\Lambda w$. But $v, w \in \Lambda^0$ were arbitrary, so Λ is strongly connected.

Now suppose that Λ is strongly connected, and fix $\mu, \nu \in \Lambda^0$. Since Λ is strongly connected, there is a path $\lambda \in s(\mu)\Lambda r(\nu)$, and then $\tau := \mu\lambda\nu$ belongs to $\mu(\Lambda)\nu$ with $d_2(\mu\lambda\nu) = d(\lambda) + 1$. Any factorisation of τ into segments from $\Lambda^{1(0)} \cup \Lambda^{0(1)}$ now gives a path in $\Lambda^{1(0)} \cup \Lambda^{0(1)}$ from ν to μ, so $M_{1}^{1\Lambda}, M_{2}^{1\Lambda}$ satisfy (H2).

Finally, for (3), assume that $M_{1}^{1\Lambda}, M_{2}^{1\Lambda}$ satisfy (H2), so Λ is strongly connected by part (2). For $x \in \Lambda^\infty$, define $1_x \in \Lambda^\infty$ by $(1_x)(m, n) = x(m, n + 1)$. It is easy to see that the map $x \mapsto 1_x$ is a bijection between Λ^∞ and Λ^{∞}.

Claim: $x \in \Lambda^\infty$ is aperiodic if and only if $1_x \in \Lambda^{\infty}$ is aperiodic. To see this, let $m, n \in \mathbb{N}^k$, and fix $x \in \Lambda^\infty$. By definition, we have

$$\sigma^n(1_x) = \sigma^m(1_x) \iff (1_x)(s + m, t + m) = (1_x)(s + n, t + n) \quad \text{for } s \leq t \quad (4.4)$$

$$\iff x(s + m, t + m + 1) = x(s + n, t + n + 1) \quad \text{for } s \leq t$$

Now if $x(s + m, t + m + 1) = x(s + n, t + n + 1)$ for all $s \leq t \in \mathbb{N}^2$, then the uniqueness of factorisations in Λ ensures that $x(s + m, t + m) = x(s + n, t + n)$ for all $s \leq t \in \mathbb{N}^2$. Conversely if $x(s + m, t + m) = x(s + n, t + n)$ for all $s \leq t \in \mathbb{N}^2$, then replacing t with $t + 1$ gives $x(s + m, t + m + 1) = x(s + n, t + n + 1)$ for all $s \leq t \in \mathbb{N}^2$. Hence (4.4) shows that

$$\sigma^m(1_x) = \sigma^n(1_x) \iff x(s + m, t + m) = x(s + n, t + n) \quad \text{for } s \leq t \in \mathbb{N}^2$$

$$\iff \sigma^m(x) = \sigma^n(x),$$

establishing the claim. Thus it suffices to show that $M_{1}^{1\Lambda}$ satisfy (H3) if and only if Λ^∞ has an aperiodic element.

Suppose first that there exists an aperiodic path $x \in \Lambda^\infty$. Fix $m \in \mathbb{Z}^2$, and write $m = m_+ - m_-$ where $m_+, m_- \in \mathbb{N}^2$. Since $|v(\Lambda^\infty)|w \in \{0, 1\}$ for all $v, w \in \Lambda^0$, $i = 1, 2$, we have that x is completely determined by its restriction to the objects of Ω_d; that is, by the function from \mathbb{N}^d to Λ^i given by $n \mapsto x(n)$. Since x is aperiodic, it follows that $\sigma^{m_+}(x(n)) \neq \sigma^{m_-}(x(n))$ for some $n \in \mathbb{N}^2$. But then with $N := n + m_-$, we have $x(N + m_+ - m_-) \neq x(N)$, and $w := x[N + m_+ - m_-] \in W_{1\Lambda}^{N + m_+ - m_-}$ satisfies $w(N) \neq w(N + m)$. Since $m \in \mathbb{Z}^2$ was arbitrary, this establishes that $M_{1}^{1\Lambda}, M_{2}^{1\Lambda}$ satisfy (H3).

Now suppose that $M_{1}^{1\Lambda}, M_{2}^{1\Lambda}$ satisfy (H3). For each $m \in \mathbb{Z}^2 \{0\}$, fix $w_m \in W_{1\Lambda}^m$ and $l_m \in \mathbb{N}^2$ such that $0 \leq l_m, l_m + m \leq S(w_m)$ and $w_m(l_m) \neq w_m(l_m + m)$. Let λ_m be the unique path in Λ such that $w_m = w_{\lambda_m}^\Lambda$. We will construct an infinite path x which contains infinitely many occurrences of each λ_m; this will ensure that there is no m for which a sufficiently large shift of x has period m, and hence that x is aperiodic. The details of this construction, and the verification that the resulting x is aperiodic constitute the remainder of the proof.

Let $\{m_i : i \in \mathbb{N}\}$ be a listing of $\mathbb{Z}^2 \{0\}$. Fix an arbitrary $v \in \Lambda^0$, and for each $i \in \mathbb{N}$, let α_i be any element of $v(\Lambda^1)r(\lambda_{m_i})$, and let β_i be any element of $s(\lambda_{m_i})(\Lambda^1)v$ with the property that $d_2(\alpha_i, \beta_i, \lambda_{m_i}) \geq 1$; this is possible because Λ is strongly connected and has no sources.
For $i \in \mathbb{N}$, let $\rho_i = \alpha_i \lambda_i$, and let $\tau_i = \rho_1 \rho_2 \cdots \rho_i$. Let x be the infinite path $x = \tau_1 \tau_2 \tau_3 \cdots$. We claim that x is aperiodic.

To see this, let $s, t \in \mathbb{N}$ be distinct, and let $I_{s,t}$ be the element of \mathbb{N} such that $m_{I_{s,t}} = t - s$. Let $J = \max\{s_1, s_2, t_1, t_2\}$; since $d_1(\rho_i) \geq (1, 1)$, we have that $i \geq J$ implies $d_1(\tau_1 \cdots \tau_i) \geq s, t$. Let $K = \max\{I_{s,t}, J + 1\}$, and define $N = d_1(\tau_1 \cdots \tau_{K-1}) + d_1(\rho_1 \cdots \rho_{I_{s,t}-1}) + d(\alpha_{I_{s,t}}) + l_{t-s} - s$. We have $N \geq 0$ by choice of K, and

$$\sigma^s(x)(N) = x(N + s) = x_1 \cdots \tau_{K-1} \rho_1 \cdots \rho_{I_{s,t}-1} \alpha_{I_{s,t}} + l_{t-s}$$

A similar calculation shows that $\sigma^s(x)(N) = \lambda_{m_{I_{s,t}}}(l_{t-s} + (t - s))$, and hence $\sigma^s(x)(N) \neq \sigma^t(x)(N)$ by our choice of $\lambda_{m_{I_{s,t}}}$. It follows that $\sigma^s(x) \neq \sigma^t(x)$, and since $s, t \in \mathbb{N}$ were arbitrary, that x is aperiodic.

Remark 4.4. The preceding proof actually shows: (1) that Proposition 4.3 applies to M_λ^1 for any Λ satisfying the property of Lemma 3.7 for $p = 1$; and (2) that 1Λ is strongly connected (resp. strongly connected and contains an infinite path) if and only if Λ has the same property. Since our motivation is to prove Theorem 4.1, we have compressed this into a single result.

Notation 4.5. Let Λ be a finite strongly connected 2-graph with an aperiodic infinite path. We write $A^{1\Lambda}$ for the C^*-algebra associated to M_λ^1 as in [16]. That is, $A^{1\Lambda}$ is the universal C^*-algebra generated by a family $\{s_{u,v} : u, v \in W^{1\Lambda}, u(S(u)) = v(S(v))\}$ of partial isometries satisfying

\begin{align*}
(4.5) \quad & s_{u,u} = s_{v,u}^* \quad \text{for } u, v \in W^{1\Lambda}, \\
(4.6) \quad & s_{u,v}s_{v,w} = s_{u,w} \quad \text{for } u, v, w \in W^{1\Lambda}, \\
(4.7) \quad & s_{u,v} = \sum_{w \in W^{1\Lambda}, u(S(u))=w(0)} s_{u,w}s_{v,w}^* \quad \text{for } u, v, w \in W^{1\Lambda}, j \in \{1, 2\}; \text{ and} \\
(4.8) \quad & s_{a,a}s_{b,b} = 0 \quad \text{for distinct } a, b \in W^{1\Lambda}_0.
\end{align*}

Lemma 4.6. Let (Λ, d) be a finite strongly connected 2-graph which has an aperiodic infinite path. Then $C^*(\Lambda)$ is isomorphic to $A^{1\Lambda}$.

Proof. The factorisation property ensures that if Λ is strongly connected and contains an infinite path, then Λ has no sources. By Theorem 3.5, we have that $C^*(\Lambda)$ is isomorphic to $C^*(1\Lambda)$, so it suffices to show that $C^*(1\Lambda)$ is isomorphic to $A^{1\Lambda}$. It is easy to check using Definition 2.4(i)–(iv), relations (4.5)–(4.8), and the universal properties of $A^{1\Lambda}$ and $C^*(1\Lambda)$ that there exists a homomorphism $\pi : A^{1\Lambda} \to C^*(1\Lambda)$ satisfying $\pi(s_{w_{\lambda},w_{\mu}}) = s_{\lambda}s_{\mu}^*$ for all $\lambda, \mu \in 1\Lambda$, and that there exists a homomorphism $\psi : C^*(1\Lambda) \to A^{1\Lambda}$ satisfying $\psi(s_\lambda) = s_{w_{\lambda}1\Lambda}$. Since these two homomorphisms are mutually inverse, the result follows.

Remark 4.7. The argument of statement (2) of Proposition 4.3 shows that if Λ has no sources, then for any $q \geq 1$, the coordinate matrices of $q\Lambda$ will satisfy (H2) only if Λ is strongly connected and has no sources. In particular, there exists $q \in \mathbb{N}$ such that M_λ^q satisfy (H0)–(H3) if and only if M_λ^1 satisfy (H0)–(H3).
Proof of Theorem 4.1. Theorem 5.9, Proposition 5.11, and Corollary 6.4 of \cite{15} combined with the previous two results show that $C^*(\Lambda)$ is simple, purely infinite and nuclear. We have that $C^*(\Lambda)$ is unital with $1_{C^*(\Lambda)} = \sum_{v \in \Lambda^0} s_v$. Proposition 2.14 of \cite{16} establishes (4.1)–(4.3).

Remarks 4.8. (1) The proof of \cite[Proposition 2.14]{16} does not make any use of relations (H2) and (H3). Hence the formulas for $K_*(C^*(\Lambda))$ in Theorem 4.1 hold when Λ is a finite k-graph with no sinks or sources, even if it is not strongly connected and does not have an aperiodic infinite path. However, in this case $C^*(\Lambda)$ is not necessarily simple and purely infinite, and so is not determined up to isomorphism by its K-theory.

(2) The formulas for $K_*(C^*(\Lambda))$ given in Theorem 4.1 are in terms of the coordinate matrices $M^1_{1}\Lambda$ of the dual k-graph. Proposition 5.1 of \cite{6} shows that the same formulas hold if all instances $M^1_{1}\Lambda$ are replaced with $M^1\Lambda$, but it is unclear how to show this directly.

References