A GROUPOID GENERALIZATION OF LEAVITT PATH ALGEBRAS

LISA ORLOFF CLARK, CYNTHIA FARTHING, AIDAN SIMS, AND MARK TOMFORDE

Abstract. Let \(G \) be a locally compact, Hausdorff groupoid in which \(s \) is a local homeomorphism and \(G^{(0)} \) is totally disconnected. Assume there is a continuous cocycle \(c \) from \(G \) into a discrete group \(\Gamma \). We show that the collection \(A(G) \) of locally-constant, compactly supported functions on \(G \) is a dense \(* \)-subalgebra of \(C_c(G) \) and that it is universal for algebraic representations of the collection of compact open bisections of \(G \). We also show that if \(G \) is the groupoid associated to a row-finite graph or \(k \)-graph with no sources, then \(A(G) \) is isomorphic to the associated Leavitt path algebra or Kumjian-Pask algebra. We prove versions of the Cuntz-Krieger and graded uniqueness theorems for \(A(G) \).

1. Introduction

A ring \(R \) is said to have invariant basis number if any two bases (i.e., \(R \)-linearly independent spanning sets) of a free left \(R \)-module have the same number of elements. Many familiar rings (e.g., fields, commutative rings, left-Noetherian rings) have invariant basis number, but there are many examples of noncommutative rings that do not. A ring \(R \) without invariant basis number is said to have module type \((m,n)\) if \(m < n \) are natural numbers chosen minimally with \(R^m \cong R^n \) as left \(R \)-modules. In the 1940's, Leavitt constructed algebras \(L_{m,n} \) with module type \((m,n)\) for all pairs of natural numbers with \(m < n \) [12, 13]. The \(L_{m,n} \) are now known as the Leavitt algebras, and when \(m = 1 \), the Leavitt algebra \(L_{1,n} \) is the unique nontrivial unital complex algebra generated by elements \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_n \) such that \(\sum_{i=1}^{n} x_i y_i = 1 \) and \(y_i x_j = \delta_{i,j} 1 \) for all \(i, j \leq n \). In the 1970’s, independent of Leavitt’s work and motivated by the search for \(C^* \)-algebraic analogues of Type III factors, Cuntz defined a class of \(C^* \)-algebras \(O_n \), one for each integer \(n \geq 2 \), which are generated by elements \(s_1, \ldots, s_n \) satisfying \(\sum_{i=1}^{n} s_i s_i^* = 1 \) and \(s_i^* s_i = 1 \) for all \(i \) (it follows that \(s_i^* s_j = \delta_{i,j} 1 \) for all \(i, j \leq n \)). A consequence of the uniqueness of \(L_{1,n} \) is that it is isomorphic to the dense \(* \)-subalgebra of \(O_n \) generated by \(s_1, \ldots, s_n \) via an isomorphism that carries each \(x_i \) to \(s_i \) and each \(y_i \) to \(s_i^* \).

Shortly after Cuntz’s work, Cuntz and Krieger generalised Cuntz’s results to describe a class of \(C^* \)-algebras \(O_A \) associated to binary-valued matrices \(A \) [5]. At about the same time, Enomoto and Watatani provided a very elegant description of these Cuntz-Krieger algebras in terms of the directed graphs encoded by the matrices. Nearly twenty years later, Kumjian, Pask, Raeburn, and Renault developed the class of \(C^* \)-algebras now known as graph \(C^* \)-algebras [11], as a far-reaching generalization of the Cuntz-Krieger algebras patterned on Enomoto and Watatani’s approach. Each graph \(C^* \)-algebra is described in terms of generators associated to the vertices and edges in the graph subject to relations encoded by connectivity in the graph. The Cuntz algebra \(O_n \) corresponds to the
graph with one vertex and \(n \) edges. A remarkable assortment of important \(C^* \)-algebraic properties of a graph \(C^* \)-algebra can be characterised in terms of the structure of the graph (see \[16\] for a good overview). Shortly afterwards, Kumjian and Pask introduced a sort of higher-dimensional graph \[9\], now known as a \(k \)-graph, and an associated class of \(C^* \)-algebras, as a flexible visual model for the higher-rank Cuntz-Krieger algebras discovered by Robertson and Steger \[20\]. When \(k = 1 \), a \(k \)-graph is essentially a directed graph, and Kumjian and Pask’s \(C^* \)-algebras coincide with the graph \(C^* \)-algebras of \[11\].

In the early 2000’s, the algebraic community became interested in the similarity between the constructions of Leavitt and Cuntz and the potential for the graph \(C^* \)-algebra template to provide a broad class of interesting new algebras. Following the lead of \[11\], Abrams and Aranda Pino associated Leavitt path algebras to a broad class of directed graphs. The Leavitt path algebra of a directed graph is the universal algebra whose presentation in terms of generators and relations is essentially the same as that of the graph \(C^* \)-algebra. Moreover, the graded uniqueness theorem for Leavitt path algebras implies that the \(C^* \)-algebra of a directed graph is a norm completion of its Leavitt path algebra \[21\]. Further generalising Leavitt path algebras, Aranda Pino, (J.) Clark, an Huef, and Raeburn recently constructed a class of algebras associated to \(k \)-graphs, which they call Kumjian-Pask algebras \[3\].

A very powerful framework for constructing \(C^* \)-algebras is the notion of a groupoid \(C^* \)-algebra. Renault’s structure theory for groupoid \(C^* \)-algebras \[19\] is exploited in \[11\] where structural properties of the graph \(C^* \)-algebra are deduced by showing that the graph \(C^* \)-algebra is isomorphic to a groupoid \(C^* \)-algebra and then tapping into Renault’s results \[19\]. The same approach was taken in \[9\] to establish important structural properties of \(k \)-graph \(C^* \)-algebras: the \(C^* \)-algebra of a \(k \)-graph is defined in terms of generators and relations, but its structure is analysed by identifying it with a groupoid \(C^* \)-algebra.

In this paper, from a sufficiently well-behaved groupoid \(G \), we construct an algebra \(A(G) \) with the following properties:

1. \(A(G) \) has a natural description as a universal algebra (Theorem 3.12);
2. \(A(G) \) is isomorphic to a dense subalgebra of the groupoid \(C^*(G) \) (Proposition 4.2); and
3. given a \(k \)-graph \(\Lambda \), if \(G = G_\Lambda \) is the groupoid corresponding to \(\Lambda \) as in \[9\] (Proposition 4.3), then \(A(G) \) is isomorphic to the Kumjian-Pask algebra \(K\,\text{P}_{\mathbb{C}}(\Lambda) \). In particular, if \(E \) is a directed graph and \(G = G_E \) is the graph groupoid associated to \(E \), then \(A(G) \) is isomorphic to the Leavitt path algebra \(L_{\mathbb{C}}(E) \).

The Cuntz-Krieger uniqueness theorem and gauge-invariant uniqueness theorem are important tools in the study of graph \(C^* \)-algebras. Versions of these theorems have been established for many generalisations of Cuntz-Krieger algebras \[5, 7, 9, 10, 11, 17, 18\]. For Leavitt path algebras, the graded uniqueness theorem is the analogue of the gauge-invariant uniqueness theorem. The first version of this graded uniqueness theorem was a corollary to Ara, Moreno, and Pardo’s characterisation \[2, \text{Theorem 4.3}\] of the graded ideals in a Leavitt path algebra. It was first stated explicitly by Raeburn who proved both the graded uniqueness theorem and Cuntz-Krieger uniqueness theorem for Leavitt path algebras of row-finite graphs with no sinks and over fields equipped with a positive definite \(* \)-operation \[4, \text{Theorem 1.3.2 and Theorem 1.3.4}\]. Tomforde extended these results to Leavitt path algebras of arbitrary graphs over arbitrary fields in \[21, \text{Theorem 4.8 and Theorem 6.8}\], and later proved the two uniqueness theorems for Leavitt path algebras of
arbitrary graphs over a ring [22, Theorem 5.3 and Theorem 6.5]. Aranda Pino, (J.) Clark, an Huef, and Raeburn subsequently proved versions of these theorems for Kumjian-Pask algebras [3]. In Section 5 we prove versions of the Cuntz-Krieger uniqueness theorem (Theorem 5.2) and the graded uniqueness theorem (Theorem 5.4) for $A(G)$. We also give an example of a groupoid satisfying our hypothesis that is not necessarily the groupoid of a k-graph.

Our aim in defining and initiating the analysis of $A(G)$ is twofold: (1) to provide a broad framework for future generalisations of Leavitt path algebras from other combinatorial structures; and (2) to make available the powerful toolkit of groupoid analysis to study these algebras. In addition, we hope this will provide a new and useful perspective on the interplay between algebra and analysis at the interface between Leavitt path algebras and graph C^*-algebras.

2. Preliminaries

A groupoid is a small category with inverses. We write $G^{(2)} \subseteq G \times G$ for the set of composable pairs in G; we write $G^{(0)}$ for the unit space of G, and we denote by r and s the range and source maps $r, s : G \rightarrow G^{(0)}$. So $(\alpha, \beta) \in G^{(2)}$ if $s(\alpha) = r(\beta)$. For $U, V \subseteq G$, we define

$$UV := \{\alpha \beta : \alpha \in U, \beta \in V, \text{ and } r(\beta) = s(\alpha)\}. \tag{2.1}$$

A topological groupoid is a groupoid endowed with a topology under which r and s are continuous, the inverse map is continuous, and such that composition is continuous with respect to the relative topology on $G^{(2)}$ inherited from $G \times G$.

Recall that if G is a groupoid, then an open bisection of G is an open subset $U \subseteq G$ such that $r|_U$ and $s|_U$ are homeomorphisms. We will work exclusively with locally compact, Hausdorff groupoids in which the source map $s : G \rightarrow G^{(0)}$ is a local homeomorphism.

Remark 2.1. In modern nomenclature, a groupoid in which the source map is a local homeomorphism is said to be étale. The range map is then a local homeomorphism as well since inversion is a continuous, self-inverse bijection that interchanges s and r. Whenever $s : G \rightarrow G^{(0)}$ is a local homeomorphism, it follows that $G^{(0)}$ is open in G, which in modern terminology is to say that G is r-discrete. The converse does not hold without additional hypotheses: if $G^{(0)}$ is open in G, then s is a local homeomorphism if and only if G admits a left Haar system, in which case the Haar system consists of counting measures (see the opening paragraph of Section 3 in [15]). In the first papers on the subject, the term étale referred to a groupoid in which $G^{(0)}$ is open, and what is now known as an étale groupoid was described as an étale groupoid with a Haar system. The terminology is now a little ambiguous. We will circumvent the issue by simply writing out what we are assuming about our groupoids. Since, in particular, in [19] the phrase “an étale groupoid with a Haar system” is equivalent to “a groupoid in which the source map is a local homeomorphism,” we can and will apply results from [19].

Lemma 2.2. Let G be a topological groupoid such that $s : G \rightarrow G^{(0)}$ is a local homeomorphism. Suppose that $G^{(0)}$ has a basis consisting of clopen sets; that is, $G^{(0)}$ is totally disconnected. Then the topology on G has a basis of clopen bisections. Moreover, if G is locally compact and Hausdorff, then G has a basis of compact open bisections.
Proof. By Remark 2.1 we may apply Proposition 2.8 of [19] to see that G has a basis of open bisections. For each $\gamma \in G$, let U be an open bisection containing γ. Since r is an open map there exists a basic clopen neighbourhood X of $r(\gamma)$ such that $X \subseteq r(U)$. Then $XU = \{ h \in U : r(h) \in X \} = U \cap r^{-1}(X)$ is homeomorphic to X by choice of U and in particular is a clopen bisection containing γ. If G is also locally compact, then U may be chosen to be precompact. Hence the clopen subset XU is a compact open bisection.

Notation 2.3. For the remainder of this paper, Γ will denote a discrete group, G will denote a locally compact, Hausdorff groupoid with totally disconnected unit space in which $s : G \to G^{(0)}$ is a local homeomorphism, and c will denote a continuous cocycle from G to Γ (that is, c carries composition in G to the group operation in Γ).

By Lemma 2.2 with Γ, G and c as above, G has a basis of compact open bisections. Since G is Hausdorff, compact subsets of G are closed. We will use this fact frequently and without further comment.

Remark 2.4. These hypotheses might sound very restrictive, but, for instance, every k-graph groupoid satisfies them (see, for example, [14]).

Remark 2.5. Let U be a compact open subset of a topological space X. Let F be a finite cover of U by compact open subsets of U. For each nonempty $H \subseteq F$, let $V_H := (\cap H) \setminus (\bigcup (F \setminus H))$. Since each $V \in F$ is compact and open, so is each V_H. In particular, since F is finite, so is $K := \{ H \subseteq F : H \neq \emptyset, V_H \neq \emptyset \}$, and

$$U = \bigsqcup K$$

is an expression for U as a finite disjoint union of nonempty compact open sets such that for each $W \in K$ we have $W \subseteq V$ for at least one $V \in F$, and such that whenever $W \in K$ and $V \in F$ satisfy $W \not\subseteq V$, we have $W \cap V = \emptyset$. We refer to this as the \textit{disjointification} of the cover F of U.

3. CONSTRUCTION OF THE LEAVITT GROUPOID ALGEBRA

Definition 3.1. Let X be a topological space. A function $f : X \to Y$ is \textit{locally constant} if for every $x \in X$ there exists a neighbourhood U of x such that $f|_U$ is constant.

Lemma 3.2. If $f : X \to \mathbb{C}$ is continuous and locally constant then $\text{supp}(f) := \{ x \in X : f(x) \neq 0 \}$ is clopen.

Proof. Since f is locally constant, for each $x \in X$ such that $f(x) = 0$, there is an open neighbourhood U_x^0 of x such that $f(y) = 0$ for all $y \in U_x^0$. Hence $\{ x \in X : f(x) = 0 \} = \bigcup_{f(x)=0} U_x^0$ is open. It is also closed as it is the preimage of the closed set $\{0\}$. Hence it and its complement supp(f) are both clopen.

Definition 3.3. Let Γ be a discrete group, G a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \to G^{(0)}$ is a local homeomorphism, and $c : G \to \Gamma$ a continuous cocycle. For each $n \in \Gamma$, let $G_n := c^{-1}(n) \subseteq G$, and let A_n denote the complex vector space

$$A_n := \{ f \in C_c(G) \mid \text{supp}(f) \subseteq G_n \text{ and } f \text{ is locally constant} \}$$

with pointwise addition and scalar multiplication. We define $A(G) := \text{span}\{ A_n : n \in \Gamma \} \subseteq C_c(G)$. The A_n are pairwise linearly independent in $A(G)$.
By definition, $A(G)$ consists of compactly-supported functions $f : G \to \mathbb{C}$ such that each $f_n := f|_{G_n}$ belongs to A_n, and $f_n = 0$ for all but finitely many n. Lemma 3.2 implies that $f \in C_c(G)$ is locally constant if and only if $f|_{\text{supp}(f)}$ is locally constant.

The notation $A(G)$ does not suggest any dependence on the cocycle c. The following lemma justifies this. Since we may endow any groupoid G with the trivial cocycle into the trivial group $\{e\}$, it follows that $A(G)$ is defined for any groupoid G with totally disconnected, locally compact unit space such that s is a local homeomorphism.

Lemma 3.4. Let Γ be a discrete group, G a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \to G^{(0)}$ is a local homeomorphism, and $c : G \to \Gamma$ a continuous cocycle. Then $A(G) = \{f \in C_c(G) : f$ is locally constant$\}$. If U is the basis of all compact open subsets of G, we have $A(G) = \text{span}\{1_U : U \in U\}$.

Proof. Let $f \in A(G)$. Write $f = \sum_{k \in F} f_k$ where $F \subseteq \Gamma$ is finite and each f_k belongs to A_k. Fix $\alpha \in \text{supp}(f)$. Let $n := c(\alpha)$. Since $\alpha \in \text{supp}(f)$, we have $n \in F$. That c is continuous and Γ is discrete implies G_n is a neighbourhood of α and $f|_{G_n} = f_n|_{G_n}$ by definition. The function f_n is locally constant, so there exists a subneighbourhood $\mathcal{U} \subseteq G_n$ of α on which f_n, and hence f, is constant. Hence $A(G) \subseteq \{f \in C_c(G) : f$ is locally constant$\}$.

Now suppose that $f \in C_c(G)$ is locally constant. Since c is continuous and Γ is discrete, each $G_n := c^{-1}(n)$ is clopen. The collection of open sets $\{G_n\}_{n \in \Gamma}$ covers supp(f) and supp(f) is compact, so there is a finite subset $F \subseteq \Gamma$ such that $f|_{G_n} \equiv 0$ for $n \notin F$. Hence, defining $f_n(\alpha) := 1_{G_n}(\alpha)f(\alpha)$ (multiplication here is pointwise) for all $n \in \Gamma$ and $\alpha \in G$, we have $f = \sum_{n \in F} f_n$. Each $f_n \in A_n$, and therefore $f \in A(G)$. This proves the first assertion.

For any $U \in \mathcal{U}$, the function 1_U is locally constant; therefore $\text{span}\{1_U : U \in \mathcal{U}\} \subseteq A(G)$ by the preceding paragraphs. We must show that $A(G) \subseteq \text{span}\{1_U : U \in \mathcal{U}\}$. Fix $f \in A(G)$. Since f is locally constant and \mathcal{U} is a basis, for each $\alpha \in \text{supp}(f)$, there is a neighbourhood $U_\alpha \in \mathcal{U}$ of α such that $f|_{U_\alpha}$ is constant. By Lemma 3.2 we may assume that $U_\alpha \subseteq \text{supp}(f)$. Since supp$(f)$ is compact there is a finite subset $F \subseteq \{U_\alpha\}_{\alpha \in \text{supp}(f)}$ such that supp$(f) = \bigcup F$. Let K be the disjointification of F discussed in Remark 2.5. Since f is constant on each $V \in F$ and each $W \in K$ is a subset of some $V \in F$, the function f is constant on each $W \in K$. Hence, writing $f(W)$ for the unique value taken by f on $W \in K$, we have $f = \sum_{W \in K} f(W)1_W$. \hfill \Box

Definition 3.5. Let Γ be a discrete group, G a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \to G^{(0)}$ is a local homeomorphism, and $c : G \to \Gamma$ a continuous cocycle. We say that a subset S of G is graded if the cocycle c is constant on S. If $S \subseteq c^{-1}(n)$, we say that S is n-graded. For each $n \in \Gamma$ we write $B_n^c(G)$ for the collection of all n-graded compact open bisections of G. We write $B_n^\omega(G)$ for $\bigcup_{n \in \Gamma} B_n^c(G)$.

Lemma 3.6. Let Γ be a discrete group, G a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \to G^{(0)}$ is a local homeomorphism, and $c : G \to \Gamma$ a continuous cocycle. Every $f \in A(G)$ can be expressed as $f = \sum_{U \in F} a_U 1_U$ where F is a finite subset of $B_n^\omega(G)$ whose elements are mutually disjoint and $a : U \mapsto a_U$ is a function from F to \mathbb{C}.

Proof. Let $f \in A(G)$. By Lemma 3.4 there is a finite set K_0 of compact open sets and an assignment $W \mapsto d_W$ of scalars to the elements of K_0 such that $f = \sum_{W \in K_0} d_W 1_W$. Let

$$K := \{W \cap G_n : W \in K_0, n \in \Gamma, W \cap G_n \neq \emptyset\}.$$
Since Γ is discrete and c is continuous, each G_n is open. Since each $W \in K_0$ is compact, K is finite. Each $V \in K$ is graded; we write $c(V)$ for the unique value taken by c on V. For each $V \in K$, let

$$b_V = \sum_{W \in K_0, W \cap G_{c(V)} = V} d_W.$$

Then $f = \sum_{V \in K} b_V 1_V$.

Let F be the disjointification of K. Each $U \in F$ is graded because F is a refinement of K. For $U \in F$, define

$$a_U = \sum_{V \in K, U \subseteq V} b_V.$$

Then $f = \sum_{U \in F} a_U 1_U$ is the desired expression. \square

Recall that given a locally compact, Hausdorff groupoid G such that $s : G \to G^{(0)}$ is a local homeomorphism, and given $f, g \in A(G) \subseteq C_c(G)$, the functions f^* and $f^* g$ are given by

(3.1) \quad f^*(\gamma) = \overline{f(\gamma^{-1})}

(3.2) \quad (f^* g)(\gamma) = \sum_{r(\alpha) = r(\gamma)} f(\alpha) g(\alpha^{-1}\gamma).

We will show that $A(G)$ is a graded $*$-algebra using the following lemma.

Lemma 3.7. Let G be a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \to G^{(0)}$ is a local homeomorphism. Fix compact open bisections U and V of G. Then $1_U * 1_V = 1_{UV}$.

Proof. For $\alpha \in G$, we have

$$(1_U * 1_V)(\alpha) = \sum_{r(\beta) = r(\alpha)} 1_U(\beta) 1_V(\beta^{-1}\alpha) = \sum_{\beta \in U, r(\beta) = r(\alpha)} 1_U(\beta) 1_V(\beta^{-1}\alpha).$$

We consider two cases. First suppose that $1_{UV}(\alpha) = 1$. Then there exist $\beta \in U$ and $\gamma \in V$ such that $\alpha = \beta \gamma$. Since U and V are bisections, this β is the unique element of U such that $r(\beta) = r(\alpha)$, and hence there is just one nonzero term in the above sum, giving $(1_U * 1_V)(\alpha) = 1_U(\beta) 1_V(\gamma) = 1$.

Now suppose that $1_{UV}(\alpha) = 0$. Then there do not exist $\beta \in U$ and $\gamma \in V$ such that $\alpha = \beta \gamma$. So for each $\beta \in U$ such that $r(\beta) = r(\alpha)$, we have $\beta^{-1}\alpha \notin V$ and hence $1_U(\beta) 1_V(\beta^{-1}\alpha) = 0$. Thus $(1_U * 1_V)(\alpha) = 0$. \square

Proposition 3.8. Let Γ be a discrete group, G a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \to G^{(0)}$ is a local homeomorphism, and $c : G \to \Gamma$ a continuous cocycle. Under the operations (3.1) and (3.2), $A(G)$ is a Γ-graded $*$-algebra.

Remark 3.9. For us, an involution on a $*$-algebra over \mathbb{C} is always conjugate linear.

Remark 3.10. We do not assume that Γ is abelian so we will write the group operation multiplicatively.
Proof. First, observe that the *-operation is a conjugate-linear involution on \(A(G)\) and takes \(A_n\) to \(A_{n-1}\). Next we will show that the multiplication defined on \(A(G)\) is a graded multiplication. If \(f \in A_n\) and \(g \in A_{n'}\), then if \((f \ast g)(\gamma) \neq 0\) we have \(f(\alpha) \neq 0\) and \(g(\alpha^{-1}\gamma) \neq 0\) for some \(\alpha\) with \(r(\alpha) = r(\gamma)\). In particular, \(c(\alpha) = m\), and \(c(\alpha^{-1}\gamma) = n\) forcing \(c(\gamma) = mn\) (because \(c(\gamma) = c(\alpha\alpha^{-1}\gamma) = c(\alpha)c(\alpha^{-1}\gamma)\)). Hence \(\text{supp}(f \ast g) \subseteq G_m\).

To see that \(A(G)\) is closed under multiplication, let \(f, g \in A(G)\). By Lemma 3.6 we can express \(f = \sum_{U \in F} a_U 1_U\) and \(g = \sum_{V \in H} b_V 1_V\) where \(F\) and \(H\) are finite sets of mutually disjoint elements of \(B^0_n(G)\). Using Lemma 3.7 for the third equality, we calculate:

\[
f \ast g = \sum_{U \in F} a_U 1_U \ast \sum_{V \in H} b_V 1_V = \sum_{U \in F} \sum_{V \in H} a_U b_V 1_U 1_V = \sum_{U \in F} \sum_{V \in H} a_U b_V 1_U 1_V \in A(G).
\]

We finish this section by presenting of \(A(G)\) as a universal algebra.

Definition 3.11. Let \(\Gamma\) be a discrete group, \(G\) a locally compact, Hausdorff groupoid with totally disconnected unit space such that \(s : G \to G^{(0)}\) is a local homeomorphism, and \(c : G \to \Gamma\) a continuous cocycle. Let \(B\) be an algebra over \(\mathbb{C}\). A representation of \(B^0_n(G)\) in \(B\) is a family \(\{u_U : U \in B^0_n(G)\} \subseteq B\) satisfying

(R1) \(t_\emptyset = 0\);

(R2) \(t_U t_V = t_{UV}\) for all \(U, V \in B^0_n(G)\); and

(R3) \(t_U + t_V = t_{(U \cup V)}\) whenever \(U\) and \(V\) are disjoint elements of \(B^0_n(G)\) for some \(n\).

Theorem 3.12. Let \(\Gamma\) be a discrete group, \(G\) a locally compact, Hausdorff groupoid with totally disconnected unit space such that \(s : G \to G^{(0)}\) is a local homeomorphism, and \(c : G \to \Gamma\) a continuous cocycle. Then \(\{u_U : U \in B^0_n(G)\} \subseteq A(G)\) is a representation of \(B^0_n(G)\) which spans \(A(G)\). Moreover, \(A(G)\) is universal for representations of \(B^0_n(G)\) in the sense that for every representation \(\{u_U : U \in B^0_n(G)\}\) of \(B^0_n(G)\) in an algebra \(B\), there is a unique homomorphism \(\pi : A(G) \to B\) such that \(\pi(1_U) = t_U\) for all \(U \in B^0_n(G)\).

Proof. The collection \(\{1_U : U \in B^0_n(G)\}\) certainly satisfies (R1) and (R3), and it satisfies (R2) by Lemma 3.7. That this family spans \(A(G)\) follows from Lemma 3.6.

Let \(B\) be a complex algebra and let \(\{1_U : U \in B^0_n(G)\}\) be a representation of \(B^0_n(G)\) in \(B\). We must show that there is a homomorphism \(\pi : A(G) \to B\) satisfying \(\pi(1_U) = t_U\) for all \(U \in B^0_n(G)\); uniqueness follows from the previous paragraph. We begin by showing that

\[
\sum_{U \in F} t_U = t_{\bigcup F} \quad \text{for } n \in \Gamma \text{ and finite } F \subseteq B^0_n(G) \text{ consisting of mutually disjoint bisections such that } \bigcup F \in B^0_n(G).
\]

Let \(F \subseteq B^0_n(G)\) be a finite collection of mutually disjoint bisections such that \(\bigcup F\) is a bisection. We claim that \(r(U) \cap r(V) = \emptyset\) for distinct \(U, V \in F\). To see this, fix \(x \in r(U)\). There exists \(\alpha \in U\) such that \(r(\alpha) = x\), and this \(\alpha\) is the unique element of \(\bigcup F\) whose range is \(x\) because \(\bigcup F\) is a bisection. Since \(U \cap V = \emptyset\), we have \(\alpha \notin V\) and hence \(x \notin r(V)\). So the sets \(r(U)\) where \(U \in F\) are mutually disjoint as claimed. Thus each \(U \in F\) satisfies \(U = r(U) \cup (U\setminus F)\). A standard induction extends (R3) to finite collections of mutually disjoint compact open subsets of \(G^{(0)}\). Combining this with (R2), we obtain

\[
t_{\bigcup F} = t_{r(\bigcup F)} t_{\bigcup F} = \sum_{U \in F} t_{r(U)} t_{\bigcup F} = \sum_{U \in F} t_{r(U)} (U \setminus F) = \sum_{U \in F} t_U.
\]

We show next that the formula \(\sum_{U \in F} a_U 1_U \mapsto \sum_{U \in F} a_U t_U\) is well-defined on linear combinations of indicator functions where \(F \subseteq B^0_n(G)\) is a finite collection of mutually
disjoint bisections. It will follow from Lemma 3.6 that there is a unique linear map \(\pi : A(G) \to B \) such that \(\pi(1_U) = t_U \) for each \(U \in B^*_\alpha(G) \). Fix \(f \in A(G) \) and suppose that
\[
\sum_{U \in F} a_U 1_U = f = \sum_{V \in H} b_V 1_V
\]
where each of \(F \) and \(H \) is a finite set of mutually disjoint elements of \(B^*_\alpha(G) \). We must show that
\[
\sum_{U \in F} a_U t_U = \sum_{V \in H} b_V t_V.
\]
Since the \(G_n \) are mutually disjoint, for each \(n \in \Gamma \) we have
\[
\sum_{U \in F \cap B^*_\alpha(G)} a_U 1_U = f|_{G_n} = \sum_{V \in H \cap B^*_\alpha(G)} b_V 1_V,
\]
so we may assume that \(F, G \subseteq B^*_\alpha(G) \) for some \(n \in \Gamma \).

Let \(K = \{U \cap V : U \in F, V \in H, U \cap V \neq \emptyset\} \). Then each \(W \in K \) belongs to \(B^*_\alpha(G) \). Moreover, for \(U \in F \) we have \(U = \bigcup \{W \in K : W \subseteq U\} \). Hence (3.3) gives \(t_U = \sum_{W \in K, W \subseteq U} t_W \) for each \(U \in F \); a similar decomposition holds for \(t_V \) for each \(V \in H \). Therefore
\[
\sum_{U \in F} a_U t_U = \sum_{U \in F} \sum_{W \in K, W \subseteq U} a_U t_W = \sum_{W \in K} \left(\sum_{U \in F, W \subseteq U} a_U \right) t_W,
\]
and similarly
\[
\sum_{V \in H} b_V t_V = \sum_{V \in H} \left(\sum_{U \in F, W \subseteq U} b_V \right) t_W.
\]
Fix \(W \in K \). It suffices now to show that \(\sum_{U \in F, W \subseteq U} a_U = \sum_{V \in H, W \subseteq V} b_V \). By definition of \(K \), the set \(W \) is nonempty, so let \(\alpha \in W \). Then for \(U \in F \), we have \(\alpha \in U \implies W \cap U \neq \emptyset \implies W \subseteq U \). Since \(\alpha \in W \), this implies that \(\alpha \in U \iff W \subseteq U \). Hence
\[
f(\alpha) = \sum_{U \in F} a_U 1_U(\alpha) = \sum_{U \in F, \alpha \in U} a_U = \sum_{U \in F, W \subseteq U} a_U.
\]
a similar calculation shows that \(\sum_{V \in H, W \subseteq V} b_V = f(\alpha) \) as well. So there is a linear map \(\pi : A(G) \to B \) such that \(\pi(1_U) = t_U \) for all \(U \in B^*_\alpha(G) \).

We must check that \(\pi \) is a homomorphism. To see that \(\pi \) is multiplicative, fix \(f, g \in A(G) \). Express \(f = \sum_{U \in F} a_U 1_U \) and \(g = \sum_{V \in H} b_V 1_V \) where \(F \) and \(H \) are finite subsets of \(B^*_\alpha(G) \), and calculate:
\[
\pi(fg) = \pi\left(\sum_{U \in F} a_U 1_U \left(\sum_{V \in H} b_V 1_V \right) \right) = \pi\left(\sum_{U \in F, V \in H} a_U b_V 1_U 1_V \right).
\]
Since Lemma 3.7 gives \(1_U 1_V = 1_{UV} \) for all \(U, V \), we then have
\[
\pi(fg) = \pi\left(\sum_{U \in F, V \in H} a_U b_V 1_{UV} \right) = \sum_{U \in F, V \in H} a_U b_V t_{UV}.
\]
Each \(t_{UV} = t_U t_V \) by \([R2]\), so
\[
\pi(fg) = \sum_{U \in F} \sum_{V \in H} a_U b_V t_U t_V = \left(\sum_{U \in F} a_U t_U \right) \left(\sum_{V \in H} b_V t_V \right) = \pi(f) \pi(g)
\]
as required. \(\square \)
4. $A(G)$ is dense in $C^*(G)$

Since our aim is to produce algebras associated to totally disconnected, locally compact, Hausdorff groupoids whose relationship to the groupoid C^*-algebra is analogous to that of Leavitt path algebras to graph C^*-algebras, we show in this section that the subalgebra $A(G)$ of $C_c(G)$ is dense in the full (and hence also the reduced) C^*-algebra of G. We could prove this as in [11, Proposition 4.1] by using the Stone-Weierstrass theorem to prove that $A(G)$ is dense in $C_0(G)$, but a direct argument takes about the same amount of effort.

We first prove a technical lemma.

Lemma 4.1. Let G be a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s: G \to G^{(0)}$ is a local homeomorphism. Fix a compact open bisection U of G and suppose that $f \in C_c(G)$ is supported on U. Fix $\varepsilon > 0$. There exists a finite set V of nonempty compact open bisections of G such that $U = \bigcup V$ and such that for each $V \in V$, we have $|f(\alpha) - f(\beta)| \leq \varepsilon$ for all $\alpha, \beta \in V$.

Proof. For each $\gamma \in U$ let U_γ be a compact open neighbourhood of γ such that $U_\gamma \subseteq U$ and $|f(\alpha) - f(\gamma)| < \varepsilon/2$ for all $\alpha \in U_\gamma$. Since U is compact, there is a finite subset F of U such that $\{U_\gamma : \gamma \in F\}$ covers U. Let V be the disjointification of the U_γ as in Remark 2.5. Fix $V \in V$. Then there exists $\gamma \in F$ such that $V \subseteq U_\gamma$, and then for $\alpha, \beta \in V$, we have $|f(\alpha) - f(\beta)| \leq |f(\alpha) - f(\gamma)| + |f(\gamma) - f(\beta)| < \varepsilon$. \Box

To state the next proposition, we recall from [19] that for a locally compact Hausdorff groupoid G in which $s: G \to G^{(0)}$ is a local homeomorphism, the I-norm on $C_c(G)$ is defined as follows. For $f \in C_c(G)$, let

$$\|f\|_{I, r} := \sup_{u \in G^{(0)}} \left\{ \sum_{\alpha=(u)} |f(\alpha)| \right\}$$

and

$$\|f\|_{I, s} := \sup_{u \in G^{(0)}} \left\{ \sum_{s(\alpha)=(u)} |f(\alpha)| \right\}.$$

Then the I-norm of f is $\|f\|_I := \max\{\|f\|_{I, r}, \|f\|_{I, s}\}$. The I-norm dominates each of the universal norm, the reduced norm, and the uniform norm on $C_c(G)$. (See [19] for further details.)

Proposition 4.2. Let Γ be a discrete group, G a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s: G \to G^{(0)}$ is a local homeomorphism, and $c: G \to \Gamma$ a continuous cocycle. With notation as above, $A(G)$ is dense in $C_c(G)$ under each of the reduced norm, the universal norm, the I-norm, and the uniform norm.

Proof. Since the I-norm dominates the other three norms, it suffices to prove the result for the I-norm. Fix $f \in C_c(G)$ and $\varepsilon > 0$. Since f has compact support, $\text{supp}(f)$ can be written as a finite union of elements of $B_w^c(G)$. So we can write $f = \sum_{i=1}^n f_i$ where each f_i is supported on an element of $B_w^c(G)$. For each i, apply Lemma 4.1 to $\text{supp}(f_i)$ to obtain a cover U_i of the support of f_i by disjoint compact open bisections such that for $U \in U_i$, we have $|f_i(\alpha) - f_i(\beta)| \leq \varepsilon/n$ for all $\alpha, \beta \in U_i$. For each $i \leq n$ and each $U \in U_i$, fix $z_{i,U} \in f(U)$, so $|f_i(\alpha) - z_{i,U}| \leq \varepsilon/n$ for all $\alpha \in U$. Then let $g_i := \sum_{U \in U_i} z_{i,U} 1_U$ for all $i \leq n$ and define $g := \sum_{i=1}^n g_i \in A(G)$. We have

$$\|f - g\|_I \leq \sum_{i=1}^n \|f_i - g_i\|_I.$$

Fix $i \leq n$. It suffices to show that $\|f_i - g_i\|_I \leq \varepsilon/n$. Fix $u \in G^{(0)}$. Since f_i is supported on a bisection, there is at most one $\alpha \in s^{-1}(u) \cap \text{supp}(f_i)$. If there is no such α, then
Proof. By [9, Corollary 3.5], the Kumjian-Pask algebra $\text{KP}(\Lambda \bigcup \mu, \nu) = 1$ for all (μ, ν). Therefore $\sum_{\alpha \in \mathbb{N}} |(f_i - g_i)(\alpha)| = 0$ and we are done. So suppose that $\alpha \in s^{-1}(u) \cap \text{supp}(f_i)$. Then there is a unique $U_0 \in \mathcal{U}_i$ such that $\alpha \in U_0$. Therefore $\sum_{\alpha \in s^{-1}(u)} |(f_i - g_i)(\alpha)| = |f_i(\alpha) - z_i|_{U_0} \leq \varepsilon/n$. Since $u \in G^{(0)}$ was arbitrary, we conclude that $\|f_i - g_i\|_{U, r} \leq \varepsilon/n$. A symmetric argument gives $\|f_i - g_i\|_{L, r} \leq \varepsilon/n$ as required.

Proposition 4.3. Suppose that Λ is a row-finite, k-graph with no sources and that G_Λ is the corresponding k-graph groupoid. Then $A(G_\Lambda)$ as constructed above is isomorphic to the Kumjian-Pask algebra $\text{KP}(\Lambda, \mathbb{C})$.

Proof. By [9, Corollary 3.5], $t_\lambda := 1_{Z(\Lambda, s(\lambda))}$ determines a Cuntz-Krieger Λ-family in $C^*(G)$. In particular, there is a Kumjian-Pask family ([9, Definition 3.1]) for Λ determined by $t_\lambda = 1_{Z(\Lambda, s(\lambda))}$ and $t_{\lambda^*} = 1_{Z(s(\lambda), \lambda)}$ for all $\lambda \in \Lambda$. It follows from the universal property of $\text{KP}(\Lambda, \mathbb{C})$ that there is a homomorphism $\phi : \text{KP}(\Lambda, \mathbb{C}) \to A(G_\Lambda)$ which carries each s_λ to t_λ and each s_{λ^*} to t_{λ^*}.

By [9, Theorem 3.4] the algebra $\text{KP}(\Lambda, \mathbb{C})$ is spanned by the elements $t_\mu t_{\nu^*}$ where $\mu, \nu \in \Lambda$ with $s(\mu) = s(\nu)$, and the \mathbb{Z}-grading of $\text{KP}(\Lambda, \mathbb{C})$ carries each $s_\mu s_{\nu^*}$ to $d(\mu) - d(\nu)$. So to see that ϕ is graded, it suffices to show that it preserves the grading of each $s_\mu s_{\nu^*}$, which it does since

$$\phi(s_\mu s_{\nu^*}) = 1_{Z(\mu, \nu)} = 1_{\{(x, d(\mu) - d(\nu), x) : x \in \Lambda^{(r)} \land x(s(\mu)) = s(\nu)\}} \in A(d(\mu) - d(\nu)).$$

Since each $Z(v)$ is nonempty, $\phi(p_v) \neq 0$ for each $v \in E^0$. Thus the graded uniqueness theorem for Kumjian-Pask algebras ([9, Theorem 4.1]) implies that ϕ is injective.

It remains to show that ϕ is surjective. By Lemma 3.4, $A(G_\Lambda)$ is spanned by the functions 1_U where U ranges over all compact open bisections in G_Λ. Let U be a compact open bisection. Since the grading is continuous and U is compact, we can write 1_U as the finite sum $\sum_{U \cap G_n \neq \emptyset} 1_{U \cap G_n}$, where each $U \cap G_n$ is a graded compact open bisection. So fix $n \in \mathbb{N}^k$ and a compact open n-graded bisection V. It suffices to show that $1_V \in \text{span}\{1_{Z(\mu, \nu)} : s(\mu) = s(\nu)\}$. Because V is compact and the sets $Z(\mu, \nu)$ form a basis for the topology on G_Λ ([9, Proposition 2.8]), we can write $V = \bigcup_{(\mu, \nu) \in F} Z(\mu, \nu)$ for some finite set $F \subseteq \{(\mu, \nu) : s(\mu) = s(\nu)\}$. Since V is n-graded, we have $d(\mu) - d(\nu) = n$ for all $(\mu, \nu) \in F$. Let $p : F \to \mathbb{N}$ be the function $d(\mu, \nu)$. Then for each $(\mu, \nu) \in F$ we have $Z(\mu, \nu) = \bigcup\{Z(\mu, \nu) : \alpha \in s(\mu)\Lambda^{p-d(\nu)}\}$. Let $H := \{(\mu, \nu, \alpha) : (\mu, \nu) \in F, \alpha \in s(\mu)\Lambda^{p-d(\nu)}\}$. Then $Z(\eta, \zeta) \cap Z(\eta', \zeta') = \emptyset$ for distinct $(\eta, \zeta), (\eta', \zeta') \in H$, so $V = \bigcup_{(\eta, \zeta) \in H} Z(\eta, \zeta)$. Hence $1_U = \sum_{(\eta, \zeta) \in H} 1_{Z(\eta, \zeta)}$, and it follows that ϕ is surjective.

Remark 4.4. When $k = 1$ in the preceding proposition, Λ is the path category of the directed graph $E = (\Lambda^0, \Lambda^1, r, s)$ and, in this case, the proposition specialises to the statement that $A(G)$ is isomorphic to the Leavitt path algebra of $[1]$.

5. **The uniqueness theorems**

Interestingly, in the situation of groupoids, the graded uniqueness theorem is a corollary of the natural generalization of the Cuntz-Krieger uniqueness theorem. This in turn is essentially Renault’s structure theorem for the reduced C^*-algebra of a groupoid in which the units with trivial isotropy are dense in the unit space.

Remark 5.1. The condition that the units with trivial isotropy are dense in the unit space occurs frequently in the groupoid literature. It has been variously referred to as “topologically free,” “essentially principal,” and “essentially free.” It seems that “topologically
free" is becoming the standard term, but since we use the hypothesis only in a few places, we avoid any confusion by stating it in full each time.

In the groupoid literature, given a unit u, it is standard to denote the isotropy subgroup $\{\alpha \in G : r(\alpha) = s(\alpha) = u\}$ by either $G(u)$ or G^u. Here we have chosen the more suggestive notation uGu, which is in keeping with the notation established in (2.1). Likewise, we write Gu for $s^{-1}(u)$.

Theorem 5.2. Let G be a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \rightarrow G^{(0)}$ is a local homeomorphism. Suppose that $\{u \in G^{(0)} : uGu = \{u\}\}$ is dense in $G^{(0)}$. Let $\pi : A(G) \rightarrow B$ be a homomorphism. Suppose that $\ker(\pi) \neq \{0\}$. Then there is a compact open subset $K \subseteq G^{(0)}$ such that $\pi(1_K) = 0$.

To prove our theorem, we need a technical lemma.

Lemma 5.3. Let G be a locally compact, Hausdorff groupoid such that $s : G \rightarrow G^{(0)}$ is a local homeomorphism. Fix $\alpha \in G$ and a precompact neighbourhood V of α. Suppose that $r(\alpha)Gs(\alpha) = \{\alpha\}$. Then there exist neighbourhoods X of $r(\alpha)$ and Y of $s(\alpha)$ such that $X \subseteq Y$ is a precompact open bisection.

Proof. Suppose, to the contrary, that for every neighbourhood X of $r(\alpha)$ and every neighbourhood Y of $s(\alpha)$, $X \times Y$ fails to be a bisection. Let U be an open bisection containing α. Fix a fundamental sequence of neighbourhoods $(Y_i)_{i=1}^\infty$ of $s(\alpha)$, and for each i, let $X_i := r(UY_i)$, so that $(X_i)_{i=1}^\infty$ forms a fundamental sequence of neighbourhoods of $r(\alpha)$. Since each $X_i \subseteq Y_i$ fails to be a bisection, for each i there exist $\beta_i, \gamma_i \in X_i \subseteq Y_i$ with $f(\beta_i) \neq f(\gamma_i)$, such that either $s(\beta_i) = s(\gamma_i)$ or $r(\beta_i) = r(\gamma_i)$ for all i. The sequence $((\beta_i, \gamma_i))_{i=1}^\infty$ belongs to the precompact set $V \times V$, so by passing to a subsequence and relabelling we may assume that $\beta_i \rightarrow \beta$ and $\gamma_i \rightarrow \gamma$. Since the X_i and Y_i are fundamental sequences of neighbourhoods, it follows that $r(\beta_i), r(\gamma_i) \rightarrow r(\alpha)$ and $s(\beta_i), s(\gamma_i) \rightarrow s(\alpha)$. Since $r, s : G \rightarrow G^{(0)}$ are continuous and $G^{(0)}$ is Hausdorff, $r(\beta) = r(\alpha) = r(\gamma)$ and $s(\beta) = s(\alpha) = s(\gamma)$. By hypothesis, $s(\alpha)Gr(\alpha) = \{\alpha\}$, so we have $\beta = \gamma = \alpha$. Since U is a neighbourhood of α, we then have $\beta_i, \gamma_i \in U$ for large i. Fix i such that $\beta_i, \gamma_i \in U$. Then $\beta_i \neq \gamma_i$ but either $r(\beta_i) = r(\gamma_i)$ or $s(\beta_i) = s(\gamma_i)$, contradicting that U is a bisection. □

Proof of Theorem 5.2. Fix $f \in \ker(\pi) \setminus \{0\}$. Since s is a local homeomorphism, it is an open map, so $s(supp(f)) \subseteq G^{(0)}$ is open by Lemma 3.2. Because $\{u \in G^{(0)} : uGu = \{u\}\}$ is dense in $G^{(0)}$, there exists $u \in s(supp(f))$ such that $uGu = \{u\}$. Fix $\alpha \in supp(f)$ with $s(\alpha) = u$. Then $r(\alpha)Gs(\alpha) = \alpha(\alpha^{-1}Gu) \subseteq \alpha(uGu) = \{\alpha\}$.

By Lemma 5.3, there exist compact open neighbourhoods X of $r(\alpha)$ and Y of $s(\alpha)$ such that $X \subseteq Y$ is a bisection containing α. Because r and s are continuous, $X \subseteq Y$ is also open. Since f is locally constant, there exist subneighbourhoods $X_0 \subseteq X$ of $r(\alpha)$ and $Y_0 \subseteq Y$ of $s(\alpha)$ such that $X_0 \subseteq Y_0$ is a compact open bisection and $f(\beta) = f(\alpha)$ for all $\beta \in X_0 supp(f)Y_0$.

We have $1_{X_0}, 1_{Y_0} \in A(G)$. By Lemma 3.4, f may be written as a linear combination of characteristic functions of compact open bisections. Lemma 3.7, together with bilinearity of multiplication implies that for $\beta \in G$,

$$(1_{X_0} * f * 1_{Y_0})(\beta) = 1_{X_0}(r(\beta)) f(\beta) 1_{X_0}(s(\beta)) = 1_{X_0 supp(f)Y_0}(\beta) f(\beta) = 1_{X_0 supp(f)Y_0}(\beta) f(\alpha).$$
Thus $f_0 := 1_{X_0} \ast f \ast 1_{Y_0} = f(\alpha)1_{X_0 \supp(f)Y_0}$. Since $\pi(f) = 0$, we have $\pi(f_0) = 0$. We have $(X_0 \supp(f)Y_0)^{-1}(X_0 \supp(f)Y_0) = Y_0$ because $X_0 \supp(f)Y_0$ is a bisection. Lemma 3.7 implies that $f_0^{*} \ast f_0 = |f(\alpha)|^2 1_{(X_0 \supp(f)Y_0)^{-1}(X_0 \supp(f)Y_0)} = |f(\alpha)|^2 1_{Y_0}$.

Hence $K := Y_0$ satisfies $\pi(1_K) = \frac{1}{|f(\alpha)|^2} \pi(f_0^{*} \ast f_0) = 0$ as required. □

Our graded uniqueness theorem now follows from a bootstrapping argument.

Theorem 5.4. Let Γ be a discrete group, G a locally compact, Hausdorff groupoid with totally disconnected unit space such that $s : G \to G^{(0)}$ is a local homeomorphism, and $c : G \to \Gamma$ a continuous cocycle. Suppose that $\{u \in G^{(0)} : uGu = \{u\}\}$ is dense in $G^{(0)}$. Let $\pi : A(G) \to B$ be a graded homomorphism, and suppose that $\ker(\pi) \neq \{0\}$. Then there is a compact open subset $K \subseteq G^{(0)}$ such that $\pi(1_K) = 0$.

Proof. We first claim that there exists nonzero $f \in A_e$ such that $\pi(f) = 0$. To see this, observe that since $\ker(\pi) \neq 0$, there exists $g \in \ker(\pi) \setminus \{0\}$ such that $\pi(g) = 0$. Since g is an element of the graded algebra $A(G)$, g can be expressed as a finite sum of graded components $g = \sum_{h \in F} g_h$ where $F \subseteq \Gamma$ and each $g_h \in A_h$. Now $\pi(g) = \sum_{h \in F} \pi(g_h) = 0$, and each $\pi(g_h) \in B_h$ because π is a graded homomorphism. Because the graded subspaces of B are linearly independent, it follows that each $\pi(g_h) = 0$. Since $g \neq 0$, there exists $k \in F$ such that $g_k \neq 0$. By Lemma 3.6, we can write g_k as $\sum_{V \in K} a_V 1_V$ where K is a finite set of mutually disjoint elements of $B_k^{co}(G)$. Note that $g_k = \sum_{V \in K} a_V 1_V$; define $f := g_k^{*} \ast g_k$. We claim that $f \in A_e \setminus \{0\}$ and $\pi(f) = 0$. To see this, first notice that

$$f = \left(\sum_{V \in K} a_V 1_{V^{-1}} \right) \ast \left(\sum_{W \in K} a_W 1_W \right) = \sum_{V,W \in K} a_V a_W 1_{V^{-1}} \ast 1_W = \sum_{V,W \in K} a_V a_W 1_{V^{-1}} 1_W$$

by Lemma 3.7. Now, because each $V \in K$ is a subset of G_k, each $V^{-1}W \subseteq G_k^{-1}k = G_e$, and thus $f \in A_e$ as claimed. We have $\pi(f) = 0$ because $\pi(g_k) = 0$.

To show that f is nonzero, fix $\alpha \in G_k$ such that $g(\alpha) \neq 0$. Since the elements of K are mutually disjoint, there is a unique $V_\alpha \in K$ such that $\alpha \in V_\alpha$, and then $a_{V_\alpha} = g(\alpha) \neq 0$. Since s is a local homeomorphism, $G_s(\alpha)$ is a discrete space. Write $C_c(G_s(\alpha))$ for the space of finitely supported functions from $G_s(\alpha)$ to \mathbb{C} and for each $\beta \in G_s(\alpha)$ let δ_β denote the point-mass at β so that $C_c(G_s(\alpha)) = \text{span}\{\delta_\beta : \beta \in G_s(\alpha)\}$. For $f \in C_c(G)$, let $\rho(f)$ be the linear map on $C_c(G_s(\alpha))$ determined by

$$\rho(f)\delta_\beta = \sum_{s(\alpha) = r(\beta)} f(\alpha)\delta_{\alpha}\beta.$$

Let (\cdot, \cdot) be the standard inner product on $C_c(G_s(\alpha))$, that is $(f|g) = \sum_\beta \overline{f(\beta)}g(\beta)$. Since the elements of K are mutually disjoint, $(\rho_s(\alpha)(1_V)\delta_{s(\alpha)}|\rho_s(\alpha)(1_W)\delta_{s(\alpha)}) = 0$ for distinct $V,W \in K$. A calculation shows that for $V \in K$ and $\beta,\gamma \in G_s(\alpha)$, we have $(\delta_\beta|\rho(1_V^{-1})\delta_\gamma) = (\rho(1_V)\delta_\beta|\delta_\gamma)$. Hence

$$(\rho_s(\alpha)(f)\delta_{s(\alpha)}|\delta_{s(\alpha)}) = (\rho(g_k)\delta_{s(\alpha)}|\rho(g_k)\delta_{s(\alpha)})$$

$$= \sum_{V,W \in K} a_V a_W (\rho(1_V)\delta_{s(\alpha)}|\rho(1_V)\delta_{s(\alpha)}) = \sum_{V \in K, s(\alpha) \in \{s(V)\}} |a_V|^2 \geq |a_{V_\alpha}|^2.$$

Hence $\rho_s(\alpha)(f) \neq 0$ which forces $f \neq 0$.

By hypothesis \(\{ u \in G^{(0)} : uG_eu = \{ u \} \} \) is dense in \(G^{(0)} \). By definition, \(A_e \) is equal to the space of locally constant, continuous, compactly supported functions on \(G_e \), so we may apply Theorem 5.2 to see that \(\pi|_{A_e} : A_e \to B \) annihilates \(1_K \) for some compact open \(K \subseteq G^{(0)} = G^{(0)} \). \(\square \)

Corollary 5.5. Let \(\Gamma \) be a discrete group, \(G \) a locally compact Hausdorff groupoid with totally disconnected unit space such that \(s : G \to G^{(0)} \) is a local homeomorphism, and \(c : G \to \Gamma \) a continuous cocycle. Suppose that \(\{ u \in G^{(0)} : uG_eu = \{ u \} \} \) is dense in \(G^{(0)} \). Let \(B \) be a \(\Gamma \)-graded complex algebra and let \(\{ t_U : U \in B_n^{co}(G) \} \) be a representation of \(B_n^{co}(G) \) in \(B \). Suppose that \(t_U \in B_n \) whenever \(U \in B_n^{co}(G) \) and that \(t_K \neq 0 \) for each compact open \(K \subseteq G^{(0)} \). Then the homomorphism \(\pi : A(G) \to B \) obtained from Theorem 5.12 is injective.

Proof. Since each \(A(G)_n \) is spanned by \(\{ 1_U : U \in B_n^{co}(G) \} \), the homomorphism \(\pi \) is graded. Since \(\pi(1_K) = t_K \neq 0 \) for all compact open \(K \subseteq G^{(0)} \), it follows from Theorem 5.4 that \(\ker(\pi) = \{ 0 \} \). \(\square \)

Remark 5.6. Suppose that \(G \) is a locally compact Hausdorff groupoid with totally disconnected locally compact unit space such that \(s : G \to G^{(0)} \) is a local homeomorphism and such that \(\{ u \in G^{(0)} : uG_u = \{ u \} \} \) is dense in \(G^{(0)} \). We may apply Corollary 5.5 with \(c \) the trivial cocycle to prove that \(A(G) \) is the unique algebra generated by nonzero elements \(\{ t_U : U \) is a compact open bisection of \(G \)\) satisfying

1. \(t_\varnothing = 0 \);
2. \(t_U t_V = t_{UV} \) for all compact open bisections \(U, V \); and
3. \(t_U + t_V = t_{U \cup V} \) whenever \(U \) and \(V \) are disjoint compact open bisections.

Remark 5.7. In the proof of Theorem 5.4, to see that the function \(g_k^* \circ g_k \) was nonzero, we really just checked that its image under Renault’s left-regular representation of \(G \) associated to the unit \(s(\alpha) \) is nonzero. However, since we are not working in a \(C^* \)-completion, we can do everything at the level of linear algebra rather than on Hilbert space. We could instead have appealed to the \(C^* \)-identity by regarding \(A(G) \) as a subalgebra of \(C_\tau(G) \), but chose a more elementary argument: our argument is essentially that used by Renault to show that the reduced norm is positive definite on \(C_e(G) \).

Remark 5.8. Recall from [7] that if \(\Lambda \) is a finitely aligned \(k \)-graph, then the \(k \)-graph groupoid \(G_\Lambda \) is totally disconnected and locally compact, and carries a \(\mathbb{Z} \)-grading such that \(\{ u \in G^{(0)} : uG_\epsilon u = \{ u \} \} \) is dense in \(G^{(0)} \). So our graded uniqueness theorem applies to \(A(G_\Lambda) \) for any finitely aligned \(k \)-graph. Likewise, Remark 5.6 suggests a Cuntz-Krieger uniqueness theorem for \(A(G_\Lambda) \). But in practise the relations described in Definition 3.11 and Remark 5.6 are much harder to verify than those of [3] Definition 3.1.

Example 5.9. To see that the class of Leavitt groupoid algebras is broader than that of Kumjian-Pask algebras [3], we describe a class of groupoids that satisfy our hypothesis but do not necessarily arise from \(k \)-graphs. Let \(T : X \to X \) be a surjective local homeomorphism of a totally disconnected, compact, Hausdorff space \(X \). Define \(T^0 := \text{id} \) and for \(k \geq 2 \) let \(T^k := T \circ \cdots \circ T \) be the \(k \)-fold self-composite of \(T \). Let \(G \) be the Deaconu-Renault groupoid defined in [8] Section 3. So \(G = \{(x, n, y) \in X \times \mathbb{Z} \times X : T^k(x) = T^l(y), n = k - l \} \).
Let $G^{(0)}$ be the subset $\{(x, 0, x) : x \in X\}$, which we identify with X in the obvious way. The range and source maps are given by $r(x, n, y) = x$ and $s(x, n, y) = y$. Hence triples (x_1, n_1, y_1) and (x_2, n_2, y_2) are composable if and only if $x_2 = y_1$, in which case $(x_1, n_1, y_1)(x_2, n_2, y_2) := (x_1, n_1 + n_2, y_2)$. The inverse of (x, n, y) is $(y, -n, x)$. For open subsets $U, V \subseteq X$ and $k, l \geq 0$ such that $T^k|_U$ and $T^l|_V$ are homeomorphisms and $T^k(U) = T^l(V)$, define
\begin{equation*}
Z(U, V, k, l) := \{(x, k - l, y) \in G : x \in U, y \in V\}.
\end{equation*}

Then
\begin{equation*}
\{Z(U, V, k, l) : U, V \subseteq X\text{ are compact open, } k, l \geq 0, T^k|_U \text{ and } T^l|_V \text{ are homeomorphisms and } T^k(U) = T^l(V)\}
\end{equation*}

is a basis of compact open sets for a topology on G under which it becomes a locally compact, Hausdorff groupoid with totally disconnected unit space X. Fix $(x, n, y) \in G$ and k, l such that $k - l = n$ and $T^k(x) = T^l(y)$. The source map on G restricts to a homeomorphism on each basic open set $Z(U, V, k, l)$ so is a local homeomorphism. Moreover, the map $c : G \to \mathbb{Z}$ defined by $c((x, n, y)) = n$ is a cocycle and is continuous because each basic open set belongs to some $c^{-1}(n)$. Hence (G, c) satisfies our hypotheses, and $A(G)$ is a sensible candidate for the Leavitt algebra of (X, T).

References

E-mail address: lclark@maths.otago.ac.nz

Lisa Orloff Clark, Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, NEW ZEALAND

E-mail address: cynthia-farthing@uiowa.edu

Cynthia Farthing, Department of Mathematics, 14 MacLean Hall, Iowa City, Iowa 52242-1419, USA

E-mail address: asims@uow.edu.au

Aidan Sims, School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2518, AUSTRALIA

E-mail address: tomforde@math.uh.edu

Mark Tomforde, Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA