Viability of Concurrent Transmission and Reception for UWB Radios over Multipath Channels

The 7th IEEE Symposium on Communications and Information Technologies, Oct 16-19, Sydney, Australia.

Multihop transmissions over wireless mesh networks present limited end-to-end (E2E) data rates, as every hop waits for an entire packet to arrive before starting retransmission. That is, the E2E data rate drops when every hop stores and then forwards packets, thus making such transmissions unsuitable for multimedia applications. In this work, in order to increase data rates, we present an ultra-wideband (UWB) radio transceiver capable of concurrently transmit and receive (cTxRx) packets. However, concurrently receiving and transmitting comes at the cost of a channel model with increased interference level. Herein, we explain a new interference model and propose a transceiver that compensates for it. We describe the transceiver mathematically and analyze its performance via simulations. Also, we demonstrate that the E2E data rate exceeds that of current multihop transmissions, thus allowing multimedia traffic to be transmitted over a multi-hop wireless mesh network.
[pdf]