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Abstract

In this chapter, visualization is used to evaluate the performance of global-scale

computational algorithms. We generate synthetic global data sets and input them

into computational algorithms that have a visualization capability. The global vi-

sualization allows us to quickly and easily compare the output of the computational

algorithm to the synthetic-data input. Visualization is key here because the algorithms

we are evaluating must respect the spatial structure of the input. We modify, augment,

and integrate four existing component technologies: statistical conditional simulation,

Discrete Global Grids, array set addressing, and Google Earth, where the internal rep-

resentation of the synthetic data to be visualized is mirrored by the structure of the

statistical model used to generate it. Both are spatially nested, so that one can move

up and down in resolution in a mutually consistent way. We provide an example of

how our simulation-visualization system may be used, by evaluating a computational

algorithm called Spatial Statistical Data Fusion that was developed for use on massive,

remote sensing data sets.

Keywords: Discrete Global Grids; Array Set Addressing; Efficient Algorithms and

“Flattening”; Hexagonal Image Processing; Massive Spatial Datasets; Remote Sensing;

Multi-Resolution; Google Earth; Spatial Statistics; Conditional Simulation of Atmo-

spheric CO2; Climate Model Downscaling
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1 Introduction

As satellite technologies for Earth observation have advanced over the past decades, the vol-

ume and complexity of geophysical data collected by space-based instruments has grown, and

so have the challenges of interrogating these data and drawing quantitative conclusions from

them. Large-scale computational algorithms that transform data through many stages, from

raw bits to meaningful information, are required in order to realize an order-of-magnitude

increase in scientific return. However, those algorithms necessarily incorporate modeling

assumptions and computational approximations that may lead to artifacts that in turn may

compromise scientific conclusions. Thus, it is essential to understand and quantify geophys-

ical artifacts, and visualization plays a key role in that endeavor. The geolocational aspects

of remote sensing data make them natural to visualize and interactively explore through

maps.

The usual mechanism for evaluating computational algorithms is a simulation experiment

(SE): simulated data with known properties generate synthetic input to the algorithm of in-

terest, and the algorithm’s outputs are compared to the corresponding “true” values obtained

from the simulated data. Implementing SEs for algorithms that are designed to run on mas-

sive satellite data sets can be challenging for at least two reasons. First, many geophysical

processes of interest vary continuously in space, requiring very-high-resolution simulations

to realistically mimic them. Moreover, realism also requires that scientific knowledge of the

underlying geophysics be brought to bear by enforcing some form of consistency between

the simulated data and the output of a coarse-resolution, geophysical process model. This

means that the simulations must be consistent across scales, not only with respect to mean

structure but also with respect to spatial covariance. Second, observed data collected by

satellite remote sensing instruments represent incomplete aggregates over different spatial

supports, with measurement errors superimposed. The SE must recreate this by averaging

the synthetic field over an instrument’s ground footprints, or sampling from the field if the

footprints are smaller than the resolution of the simulated field. These operations must

be performed in a way that recreates the spatial sampling and error characteristics of real
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satellite instruments.

Both these problems require that the simulated field exhibits reasonable spatial coherence

and variability. One way to achieve this is through a fine-resolution spatial statistical model

that respects the output of a coarse-resolution physical (deterministic) model. By this, we

mean that the parameters of the statistical model are set in such a way that, when the sim-

ulated field is aggregated up to the coarse resolution of the physical model, it is guaranteed

to reproduce the output of the physical model. We call this constrained-parameter-fitting

procedure calibration, and we use conditional simulation (e.g [4], Ch. 3) to simulate from

the calibrated model. Here, the computational algorithm we use to illustrate our approach

is Spatial Statistical Data Fusion (SSDF; [12]), which ingests two or more massive, hetero-

geneous, remote sensing data sets and produces optimal estimates of the underlying field.

The visualization challenge is to display the massive, fine-resolution conditional simulation

and the equally massive output of SSDF so that they can be compared. Both data sets are

global and are expected to reproduce large and small-scale spatial structures. The visualiza-

tion system must be able to render these features without geometric distortion, and it must

be capable of zooming in and out so that features and possible artifacts can be explored at

a variety of scales.

A number of systems and software tools for multi-resolution geographic visualization

already exist. Google Earth does display and allow for pyramid-based multi-resolution zoom,

but it uses a cylindrical projection that causes distortions in both appearance and, crucially

for us, in representation of spatial relationships. The cylindrical projection creates a non-

uniform tiling of earth’s surface, with tiles becoming smaller near the poles. This distorts

the spatial statistical properties of fields whose units are “per-unit areas.” The HEALPix

(Hierarchical Equal Area isoLatitude Pixelization) [9] system represents data at multiple

resolutions, with storage and computation on the sphere. However, it does not use hexagonal

tessellations of the sphere, which are ideal for spatial statistical inference [13], nor does

it provide a visualization capability by itself. Laderstadter [11] has developed a system

for exploring large climate data sets using interactive visualization and simple statistical
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tools. Like Google Earth, this system uses a cylindrical projection and does not perform

computations on the sphere. Other tools designed for global data sets (e.g., The Global

Climate Change Viewer [1]; Climate Wikience [17]) typically display data at resolutions that

are too coarse for our purposes and use unequal-area latitude-longitude grids. While they

often possess simple computational tools, they do not typically include downscaling to the

finer resolutions, where our interest lies.

Our simulation-visualization system combines four key technologies: 1) a multi-resolution

statistical process model calibrated to the output from a coarse-resolution deterministic

model; 2) the Discrete Global Grids (DGG) software package for tessellating the globe with

a hierarchy of nested hexagonal grids to provide a system of multi-resolution supports for

prediction; 3) an enhanced indexing system for cells of spherical hexagonal grids and for

mapping the cells onto a flat plane so that the statistical process model can be used without

geometric distortion; and 4) Google Earth for multi-resolution, interactive visualization of the

simulated field and the computational algorithm being evaluated. In Section 2, we describe

these four technologies and how we adapted and integrated them for our purposes. Section

3 is a case study showing how we used our system to visualize a) simulated fine-resolution

fields produced by conditional simulation, b) synthetic instrument observations constructed

from the simulated field, and c) the output from SSDF. Finally, in Section 4 we offer some

conclusions about efficacy of our system and a discussion of future work.

2 Algorithms and Methods

We have combined four component technologies to create a simulation-visualization system

for massive geophysical data sets. In this section, we describe these components and how

we have adapted them for our purposes. In Section 2.1, we briefly introduce conditional

simulation. In our context, it uses a dimension-reducing, multi-resolution spatial statistical

model that enables optimal spatial prediction at a variety of spatial resolutions. Those

predictions are identified with the hexagonal cells of the DGG, which have certain desirable

5



properties (e.g., equal area) and are described in Section 2.2. To exploit DGG’s downscaling

and image-processing features, two things are required: a method for flattening spherical

grids onto two-dimensional planes, and an efficient indexing system for the grid cells. In

Section 2.3, we describe how we satisfy these two requirements. Finally, Google Earth is a

ubiquitous and intuitive interactive visualization environment for multi-scale georeferenced

data sets. In Section 2.4, we describe how we leverage this platform for the exploration of

spatial predictions at multiple scales.

2.1 Conditional Simulation

Atmospheric processes are defined at every location on the sphere, which is our mathematical

abstraction of Earth’s surface. In practice, the surface of the sphere is discretized into a fine-

resolution regular grid; we call a generic grid cell a Basic Areal Unit or BAU. In what is to

follow, we let the BAUs be the hexagons of the DGG at the finest resolution (see Section

2.2) and identify each BAU by the latitude and longitude of its center. Let s denote the

two-dimensional latitude-longitude center of a BAU. Then our model for the geophysical

variable of interest, Y , at s is

Y (s) = µ(s) + ν(s) + ξ(s), (2.1)

where s ranges over the sphere, µ(s) is the large-scale trend, ν(s) is smooth small-scale

variation, and ξ(s) represents the remaining micro-scale variation. The components of (2.1)

are assumed to be statistically independent.

Suppose that the total number of BAUs over Earth’s surface is N ; then we can form

N -dimsenional vectors for each of the terms in Equation (2.1) by simply stacking the terms

corresponding to the N locations into column vectors. Thus we can compactly write the

entire model as,

Y = µ+ ν + ξ. (2.2)

Cressie and Johannesson [5, 6] developed a flexible, nonstationary spatial statistical model

they called the Spatial Random Effects model (SRE; see also [21]), and we use that model

6



here for ν and ξ. We assume that µ describes the mean of Y and that ν and ξ are

independent, zero-mean, multivariate Gaussian distributions.

To simulate the entire field Y , we use y-values defined on a coarse-scale grid that represent

our scientific understanding of the geophysical processes of interest. These might be output

from a finite-element approximation to a physical model. For instance, in Section 3, we

use the output of the Parameterized Chemistry and Transport Model (PCTM) for CO2

concentrations at the resolution of 1◦× 1.25◦ as our coarse-scale y-values; these “inform”

the simulation on BAUs defined by the finer-resolution DGG resolution 8 hexagons (30

kilometers in diameter).

Let the number of coarse-scale grid cells be M , and let Ỹ be the associated M -dimensional

vector of y-values. We consider the coarse-scale process to be and integrated version of the

underlying geophysical processes; namely,

Ỹ = AY,

where A is the M ×N incidence matrix that describes the relationship between the BAUs

and the coarse-scale grid.

Models for µ, ν, and ξ result in models for µ̃ ≡ Aµ, ν̃ ≡ Aν, and ξ̃ ≡ Aξ. Consequently,

we can “calibrate” choices for µ, ν, and ξ based on the empirical mean and empirical

covariance of Y.

Naturally, we would like the simulated values at BAUs to be “consistent” with the

physical-model output. At the very least, we require that, when we aggregate the simu-

lated field from the BAU-scale up to the coarse scale of the physical model, the simulated

field agrees with the model output. To achieve this, instead of simulating Y from its joint

distribution obtained from (2.2), we simulate from the conditional distribution of Y, condi-

tional on the physical-model output. That is, we generate an N -dimensional vector Y from

the conditional distribution Y given AY = Ỹ. In obvious notation,

Y|AY = Ỹ

∼ Gau(µ+ ΣA′ (AΣA′)
−1

(Ỹ−Aµ),Σ−ΣA′ (AΣA′)
−1

AΣ), (2.3)
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where Σ ≡ var(Y). This allows us to simulate finer-resolution y-values consistent with

the coarse-resolution output. Note that the conditional simulation defined by (2.3) requires

computation of (AΣA′)−1, the inverse of an M × M matrix. We take advantage of the

variance-covariance structure resulting from the Spatial Random Effects model and use the

Sherman-Morrision-Woodbury formula (e.g., [5, 6]) to invert the matrix, (AΣA′)−1 with

computational complexity of only O(M).

2.2 Discrete Global Grids

Discrete Global Grids (DGGs; [20]) provide an approach to uniformly tiling the sphere with

equal-area hexagonal cells at multiple resolutions. Regular polygonal cells are defined on

the faces of a regular polyhedron, and these cells are then projected to the sphere using an

appropriately designed inverse equal-area projection. Since a base polyhedron has the same

topology as the sphere, the topological singularities associated with whole-Earth cylindrical

projections are avoided.

The ISEA4H (Icosahedral Snyder Equal Area aperture 4 Hexagonal) DGG was chosen for

this study. This DGG is constructed by tiling an icosahedron with cells that are primarily

regular hexagons. Hexagonal grid cells have numerous advantages over traditional square

grid cells. Hexagons are the most compact regular polygon that tile the plane, and hexagonal

cells exhibit unambiguous uniform adjacency. Rasters of hexagonal pixels are 13.4% more

efficient at sampling circularly band-limited signals [14]. For kriging, hexagons have lowest

average standard error, lowest maximum standard error, and maximum screen effect [13].

The reference [19] provides a survey of additional advantages of hexagonal grids. It should

be noted that it is impossible to tile a polyhedron completely with hexagons; in the case of

the icosahedron, the 12 cells centered on the vertices of the icosahedron are pentagons with

exactly 5/6 the area of the hexagonal cells.

In the ISEA4H DGG, multiple grid resolutions are constructed by introducing, at each

resolution, cells that are 1/4 the size of the cells at the next coarsest resolution. The icosa-

hedral version of the Snyder equal area polyhedral projection [22] is used to inversely project
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the cells from the icosahedral faces to the sphere, preserving equal area at the cost of dis-

torting the shapes of the hexagonal cells. The DGG software provides us with nested grids

at increasingly fine levels of resolution, ranging from twelve 7674-km cells at the root of this

hierarchy, to 40,962 120-km cells at resolution 6, 655,362 30-km cells at resolution 8, and

more than 671 million one-kilometer cells at resolution 13.

2.3 Flattening and Image Processing

The DGG provides a multi-resolution global grid that covers a sphere with equal-area

hexagons, modulo twelve pentagons. However, indexing these grid cells in a way that allows

efficient storage and computation is not simple. The first step is to flatten the global grid

onto a two-dimensional plane that can be easily manipulated and stored. A key goal in

flattening is to achieve an arrangement of grid cells in computer memory that maintains

locality of reference. We unfold the icosahedron of the DGG onto a plane; see Figure 2.1 as

described in [3]. It is then necessary to choose an indexing scheme that allows storage and

addressing in the flattened grid.
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Figure 2.1: A flattened icosahedron

Array Set Addressing (ASA; [18]) provides a simple coordinate system with an efficient

storage template for planar hexagonal grids. The ASA coordinate system has constant-

time computation of nearest neighbors, distances, vectors, and routing on a hexagonal grid.
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Convolution can be performed using optimized matrix operations on the arrays in memory,

allowing fast downsampling, filtering, sampling, and other image-processing algorithms. ASA

hexagonal grids are divided into two arrays, one for the even rows and one for the odd rows

(see Figure 2.2). The ASA coordinate for any hexagonal cell is indexed by the triple (a, r, c),

where a ∈ [0, 1] specifies which of the two arrays and (r, c) specify the row and column,

respectively.

(1-a,
r-(1-a),
c-(1-a))

(1-a,
r-(1-a),
c+a))

(a,r,c-1) (a,r,c) (a,r,c+1)

(1-a,
r+a),

c-(1-a))

(1-a,
r+a),
c+a))

(0,0,0) (0,0,1) (0,0,3)(0,0,2)

(0,1,0) (0,1,1) (0,1,3)(0,1,2)

(1,0,0) (1,0,1) (1,0,3)(1,0,2)

(1,1,0) (1,1,1) (1,1,3)(1,1,2)

ASA Indexing on the Hexagonal Plane

Even Row Matrix

Odd Row Matrix

Array Based Storage for Computation

Figure 2.2: Hexagonal grid separated into two arrays and addressed using Array Set Ad-

dressing (ASA).

The flattened, unfolded DGG does not completely fill a plane with hexagonal cells. There

are gores, or empty locations, in the planar representation of the globe, as well as padding at

the edges of the planar image (see Figure 2.1). In order to compute efficiently on this plane,

as if it were the sphere, we pad the gores and edges with the values that would be neighbors

to those cells on the folded icosahedron. Unfortunately, this padding breaks down in the

vicinity of the 12 pentagonal cells that are distributed around the sphere. In order to detect

and deal with these, we pad the flattened plane with “NaN” in each of these 12 locations

along the centerlines of the gores (see Figure 2.3). The result of this strategy assures that,

when computing on the flattened plane, the NaN result will “poison” any computations that

are close to the pentagons. This allows us to compute on the vast majority of the sphere via

an efficient storage and indexing method, while easily detecting the 12 regions on the sphere
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where special-case processing is required. In many cases, we can ignore these regions and

compute them only when needed. Flattening, ASA indexing, and NaN poisoning provide

!  Padding'the'grid'with'the'
appropriate'cells'solves'
much'of'the'problem'

!  “Poisioning”'the'non9
paddable'cells'with'NaNs'
preserves'computability'

!  Resulting'grid'has'just'12'
regions'to'“fix”'

!  Size'of'regions'determined'
by'size'of'filter'

Figure 2.3: The red cells are “NaN poisoned” while the gray cells are filled with the values

of the cells that they overlap with after folding.

a way to move data computed on a DGG into arrays in memory that can be operated on

efficiently using standard image-processing techniques, with only small modifications.

2.4 Google Earth

Visualizing global data that have been computed on the sphere requires a globe upon which

the mapping takes place. Although there are “digital globe” displays, Google Earth of-

fers a virtual-globe platform that is ubiquitous, accessible, and free. It also supports the

visualization of global data as the user spins the globe and zooms in and out.

Google Earth is designed to deal with cylindrically projected digital imagery data. For

very fine-resolution imagery, it is possible to use a multi-resolution pyramided structure to

speed visualization. Pyramiding allows the use of coarse-resolution images when zoomed out

and full-resolution tiles when zoomed in. The tiles at intermediate resolutions are loaded as

needed when the user zooms or moves around the globe. Unfortunately, using the image-

pyramid approach requires working in a cylindrical projection. This would complicate our
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display of globally gridded data, introducing the very distortion that we hope to avoid.

Ideally, we would like to use pyramided arrays of hexagons, but Google Earth does not

support that data type.

To circumvent this limitation, we use KML (Keyhole Markup Language), the file format

used to create Google Earth visualizations, to represent the hexagonal cells of a set of DGGs

directly, as a list of coordinates that define the boundaries of the hexagonal cells. We then

shade those cells’ interiors using a color pallette to display the magnitudes of data associated

with those cells. Representing each grid cell as a polygon in KML has the advantage of

accurately displaying grid-cell boundaries at any scale, but it does not allow for the use of

built-in multi-resolution pyramids for quick display and memory management. We deal with

this by rendering small regions at high resolution (finer polygons), and global data at lower

resolution (coarser polygons). The multi-resolution nature of DGG allows us to easily group

finer polygons and average them to create coarser polygons. We are also investigating how to

render image pyramids for browsing, and then how to transition to polygons when zooming

in.

2.5 Integrating Component Technologies

Our end-to-end simulation-visualization system is implemented with a python toolkit called

DDGrid.py. This toolkit wraps the DGGRID software [19] and implements the data struc-

tures and algorithms required to store and generate KML; KML is used to visualize simulated

fields, to extract synthetic instrument observations, and later to visualize the output of the

computational algorithm being evaluated. DDGrid.py leverages existing optimized image-

processing tools from Numpy and SciPy [15] for building multi-resolution pyramids. It is

also used for computing simulated observations by averaging the BAU-level hexagons that

coincide with the ground footprints of remote sensing instruments. Figure 2.4 is a data-flow

diagram showing the main components of this system.

The DGGrid.py toolkit follows the principle of object-oriented design. The DGG is in-

stantiated in objects that represent the entire grid as well as individual hexagons. This

12



Coarse-resolution 
Physical Model 

Output

Visualization in 
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Data 
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Figure 2.4: System diagram. The Evaluation Algorithm will calculate and display a fidelity

metric for each hexagonal cell at the resolution of the visualization.
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object-oriented structure allows us to support many features, like plug-in models for in-

strument footprints, different data types, and different visualization styles and evaluation

functions. The toolkit integrates the global grid structure produced by DGGRID with the

flattened, padded, NaN poisoned, and ASA addressable representations. The objects in DG-

Grid.py map to the topology and cells of the DGG, and each object is capable of producing

KML to visualize itself. This allows us to subset the grid into any grouping that we like.

We can also use the boundaries of any grid cell to create finer-resolution cells that make

up the original grid cell. Together these features allow the production of easy-to-visualize,

multi-resolution grids.

In addition to the object-oriented representation of the DGG, the toolkit implements

utilities for extracting instrument footprints for simulation experiments. Our application

requires aggregating hexagonal cells (BAUs) over regions commensurate with the ground

footprint of a remote sensing instrument (see the discussion of the OCO-2 and AIRS foot-

prints in Section 3). For our prototype system, we have implemented two types of footprint

extraction: nearest DGG cell and average of cells within a given radius. For each footprint

location and radius, we use ASA to compute neighborhoods of DGG cells associated with

footprints and to extract corresponding averages. In the case of footprints smaller than the

DGG cell, we extract the value of the nearest-neighbor DGG cell. The resulting synthetic

instrument observations are stored and made available for algorithm testing. Footprint plug-

ins will allow us to specify satellite-footprint shapes, response curves, and measurement-error

behavior to simulate how the instruments measure.

The DGGrid.py toolkit is designed to support automated execution of simulation exper-

iments. A single entry point allows sets of parameters to be defined and systematically

processed. Hence, testing and visualization can be carried out for different parameters, both

for the conditional simulation and for the data-processing algorithm being considered.

In the next section, we describe how we can use our approach to assess the performance

of the Spatial Statistical Data Fusion (SSDF) algorithm. We shall eventually incorporate

the ability to compute and display quantitative performance metrics from inside DDGrid.py,
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but here we focus on what can be learned by visually comparing the synthetic input and the

SSDF algorithm output.

3 Evaluating SSDF Global Estimates of CO2

This section describes the specific implementation of our simulation-visualization system

for evaluating the SSDF algorithm. SSDF produces optimal estimates of geophysical fields

from two or more massive, heterogeneous, remote sensing data sets. The methodology is

similar to kriging and allows for input observations with different sampling characteristics

and spatial supports. SSDF models and subsequently leverages spatial correlation in the

data to produce optimal (minimum mean squared prediction error, unbiased) estimates of

the underlying true fields; importantly, it also produces uncertainty measures (root mean

squared prediction errors) of these estimates.

Here, we study the performance of the SSDF algorithm as it will be applied to data from

two NASA instruments that measure carbon dioxide in the atmosphere: the Atmospheric

Infrared Sounder (AIRS) and the Orbiting Carbon Observatory (OCO-2). The AIRS instru-

ment has been in orbit since mid-2002, and it observes mid-tropospheric CO2 concentration

on circular footprints that are 90 kilometers in diameter and are contiguous [2]. The OCO-2

instrument will be launched in July 2014, and it will observe total column CO2 concentration

on contiguous trapezoidal footprints roughly 2 kilometers in diameter [7]. Both instruments

fly on satellites that are in polar orbit, observing swaths of Earth along their respective

tracks from pole to pole. The AIRS field of view across-track is about 1500 kilometers, so its

swaths are wide and the entire world is seen once every three days. The OCO-2 field of view

across-track is only about 10 kilometers, so its swaths are very narrow; the OCO-2 instru-

ment never observes the whole world but repeats the same 233 globally distributed orbital

paths every 16 days. Both instruments’ data are subject to high degrees of “missingness”

because neither can observe CO2 in the presence of clouds.

To evaluate the performance of SSDF, we perform a simulation experiment using
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DDGrid.py. First, we generate a synthetic CO2 field at fine spatial resolution using conditional-

simulation technology (Section 2.1). The simulation was performed at DGG resolution-8 in

which the BAU hexagons are 30 kilometers in diameter.

The conditional simulation is calibrated to a coarser simulated atmospheric CO2 field.

The CO2 concentrations were simulated using the output of PCTM [10] driven by analyzed

meteorological fields from NASA’s Goddard Earth Observation System, version 4 (GEOS-

4). The prescribed net surface fluxes of CO2 were taken from the Carnegie Ames Stanford

Approach (CASA; [16]) model for biospheric fluxes, from Takahashi et al. [23] for the monthly

mean climatology for air-sea CO2 exchange, from Erickson et al. [8] for anthropogenic CO2

emissions, and from the Global Fire Emission Database version 2 (GFED2; [24]) for wildfire

and biomass burning emissions. This model is herein referred to as PCTM for simplicity. The

model has a horizontal resolution of 1◦× 1.25◦ with 25 vertical levels. We use the simulated

fields from level 8 (approximately 5-km elevation, meant to represent the mid-troposphere)

at 1800 GMT on April 15, 2006, in the analysis presented here.

CO2 (PPM) CO2 (PPM)

Figure 3.1a: PCTM CO2. Figure 3.1b: Simulated CO2, resolution-6.

Figure 3.1a shows the coarse-resolution PCTM model output for the mid-troposphere.

The PCTM resolution is approximately DGG-resolution-6 near the equator. This coarse

resolution shows up as blockiness in Figure 3.1a. Figure 3.1b is a global visualization of

our simulation output. Although produced at DGG resolution-8, we have displayed the
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simulation output at the coarser DGG resolution-6 (cells are 120 kilometers in diameter)

because Google Earth’s memory limitations prevent global display at finer resolutions.

Here we leveraged an important feature of our system. If we conditionally simulated

at resolution-8 and aggregated to resolution-7 or to resolution-6, etc., we would obtain a

process with the same statistical properties as if we conditionally simulated directly at the

respective resolution. The visualizations in Figures 3.1a and 3.1b show nearly identical

features, as they should, given the simulation’s constraint that the simulated field at all

resolutions must aggregate to reproduce the values on the PCTM grid.

In the second step, we sample the simulated field to create synthetic observations analo-

gous to what AIRS and OCO-2 “see.” We start with the centers of actual AIRS and OCO-2

footprints. For AIRS, we use the actual locations of non-missing footprints for a representa-

tive three-day period. To create synthetic AIRS observations, we average simulated values

for all 30-kilometer hexagons (DGG-resolution-8) with centers falling within a 45-kilometer

radius of the actual center of the AIRS footprint. In the case of OCO-2, whose footprint

is smaller than the resolution-8 hexagon, we take the value of the simulated data for the

hexagon with center nearest the center of the OCO-2 footprint. We use three representative

days of simulated orbit tracks provided to us by the OCO-2 team at the Jet Propulsion

Laboratory.

Figure 3.2a shows the simulated field at DGG resolution-8 for a wedge of Earth, with

an inset that zooms in on eastern New England and Quebec, in order that the 30-kilometer

hexagons are clearly visible. Synthetic observations for AIRS and OCO-2 are shown in Figure

3.2b. The main image shows the locations and values of AIRS observations for a subset of

Earth’s surface, color-coded according to their simulated values. Memory limitations of

Google Earth prevent us from giving a full global display of AIRS footprints. The inset

shows a better view of eastern New England and Quebec – the circles show the locations

and sizes of AIRS observations. The thin, almost vertical, strip represents the OCO-2

orbit track, although there is a representation issue here because the strip is made up of 2-

kilometer-diameter regions with values taken from the nearest 30-kilometer hexagon, whereas
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the OCO-2 track is only about 10 kilometers wide. The size mismatch between AIRS and

OCO-2 footprints would render the OCO-2 footprints invisible if we did not use the zoom in

Figure 3.3f. The OCO-2 footprints are also color-coded according to their simulated values.

CO2 (PPM) CO2 (PPM)

Figure 3.2a: Simulated CO2, resolution-8. Figure 3.2b: Synthetic observations.

Finally, we apply SSDF to estimate a contiguous field of CO2 concentrations given both

synthetic AIRS and synthetic OCO-2 observations. Our estimates are produced at 30-

kilometer spatial resolution (DGG resolution-8). Figures 3.3d and 3.3f show the fused es-

timates and corresponding standard errors at resolution-8 for the same wedge of Earth as

in Figure 3.2a, and with high-resolution insets. Figures 3.3c and 3.3e show the correspond-

ing global views produced by aggregating the resolution-8 SSDF results up to resolution-6.

Figures 3.3a and 3.3b are duplicates of Figures 3.2a and 3.1b for easy comparison.

Exploratory evaluation of SSDF might include visually comparing Figure 3.3d to Figure

3.3a, and Figure 3.3c to Figure 3.3b. The former is a regional comparison at finer resolution,

and the latter is a global comparison at coarser resolution. Both comparisons should be

considered in light of the standard-error maps that correspond to the spatial statistically

fused estimates. These are shown in Figures 3.3f and 3.3e, respectively.

One can make a number of observations about SSDF based on these visualizations. At

the global scale, the SSDF estimates of CO2 in Figure 3.3c give a smoother impression than

the simulated CO2 process given in Figure 3.3b. The standard errors in Figure 3.3e show
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features that do not appear to correspond to features in the estimates themselves, but they

do have some similarities to the simulated output in Figure 3.3b. Recall that the input

to SSDF is made up of sparse synthetic footprints like those shown in Figure 3.2b. This

accounts for the smoothing in the fused estimates and will also influence the geographic

patterns of the standard errors. At the finer spatial scale (Figure 3.3d), the smoothing is

even more pronounced, and it is accompanied by similar smoothing in the standard-error

map (Figure 3.3f). This is in sharp contrast to the spatial heterogeneity of the resolution-8

simulated field in Figure 3.3a and is due to the sparsity of the synthetic observations in the

region of the inset. Our simulation-visualization experiments illustrate that SSDF estimates

are likely to be more useful on global scales than on regional ones if the instrument data are

geographically sparse. This is not surprising, and it could have been anticipated with some

knowledge of how SSDF works (i.e., it is akin to kriging), but this visualization tool makes

it possible to understand how problematic this is for specific regions of interest.

4 Conclusion

We have built an initial version of a simulation, analysis, and visualization infrastructure

that ties the visualization environment to the representation of the underlying data in nested,

discrete global grids. In our implementation, the underlying fine-resolution data are produced

using a spatial statistical conditional-simulation methodology. The methodology constrains

the simulation output to reproduce features of a physical model that was constructed from

scientific knowledge about the structure of the true physical process.

We developed a python toolkit to implement instrument-like sampling of the simulated

field, manage interfaces between component technologies, and augment them where neces-

sary. We demonstrated how our system can be used to visualize and better understand the

behavior of a global data processing algorithm, SSDF, over different spatial scales. This

is possible because the simulated field obeys hierarchical aggregation consistency, so that

coarse-resolution fields can be derived in a statistically controlled way from fine-resolution
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fields. This mirrors the upscale-pyramiding capability with which we have augmented Google

Earth. We are currently working on a downscale-pyramiding capability that would enable

us to generate fine-resolution simulated fields for limited regions and display them in near-

real time as Google Earth zooms in on the area. This infrastructure was implemented for

the SSDF algorithm, but other computational algorithms whose performance depends on

fine-resolution spatial structure can also be evaluated.
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Figure 3.3a: Simulated CO2, resolution-8. Figure 3.3b: Simulated CO2, resolution-6.
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Figure 3.3c: SSDF estimates, resolution-6. Figure 3.3d: SSDF estimates, resolution-8.
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Figure 3.3e: Standard errors, resolution-6. Figure 3.3f: Standard errors, resolution-8.
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