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Abstract

Assumptions of normality and independence are key assumptions made in the devel-
opment and use of control charts. However for much industrial data, the assumption of
independence is hard to justify. Control charts for the sample mean and sample standard
deviation are obtained, when the observations are taken over a grid on a two-dimensional
surface. It is assumed that the observations follow an autoregressive process of order one
in both the directions. The results have been applied to road pavement data on road corse
thickness observed on a two dimensional grid.
Key words: Autocorrelated data; x̄ chart; s chart; AR(1) process.
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1 Introduction

The statistical control charts developed by Shewart (1931) have wide applications in industry
for monitoring and improving the manufacturing process. A common assumption underlying
development and use of these control charts is that observations are uncorrelated. However,
it has been observed in several manufacturing processes that this assumption is not satisfied
and successive observations show serial correlation. As pointed out by Porter and Caulcutt
(1992) and Roes and Does (1995), the standard control charts are applicable under restrictive
assumptions, which are often not satisfied in various applications. Thus the control chart has
to be modified to the nature of production process at hand. Roes and Does (1995) proposed
method for control charting the data generated by mixed model and applied the proposed
procedure to data on thickness of grinding wafers in integrated cicuits production of Philips
plant in Netherlands. Montgomery and Mastrangelo (1991) observed that the presence of
autocorrelation among observations leads to false alarms and misleading conclusions about the
control state of the process. Even small and positive autocorrelation drastically reduces the in-
control average run length of the chart. Zhang (1998a) considered EWMAST chart for weakly
stationary data. Process capability indexes for the autocorrelated processes have been studied
by Zhang (1998b). Control charts for autocorrelated data based on generalized likelihood ratio
are discussed in Capizzi and Masarotto (2008).

Two alternative approaches to handle the problem of autocorrelation in data are commonly
employed: (i) modifying Shewart control chart limits by taking into account the autocorrelation,
(ii) applying control charts to estimated residuals of the fitted time series model. Wieringa
(1999) investigated the performance of these two approaches and observed that residual charts
perform better for negative autocorrelation whereas modified control limit charts perform better
for positive autocorrelation. He also proposed a modified control chart which outperforms
both of these charts. Sparks (2000) extended the one sided CUSUM procedure for controlling
autocorrelation in AR(1) processes and compared it with two versions of Shewart charts. Jiang
(2001) computed average run length of stationary ARMA charts and, on the basis of simulations,
observed that ARMA charts are comparable to the optimal EWMA chart for monitoring IID
processes. Zhang (2002) discussed different procedures for dealing with process autocorrelation
when using process control charts and process capability indexes.

While monitoring a road construction project of NSW, Australia, Ollis (1997) and Griffiths
et al. (2003) observed data on base corse thickness of road on a two-dimensional grid, in which
there is autocorrelation in both of the orthogonal directions. For such autocorrelated observa-
tions, they developed a method to construct control charts for the mean on a two-dimensional
grid. Sparks and Ollis (2001) applied universal kriging model for the spatial data and developed
control limits to monitor the construction process of new road pavements. However, they did
not consider the control chart for standard deviation (s.d.), which plays an important role in
process variability control. The control chart for s.d. also needs to be designed accommodating
autocorrelation structure of the process on grid.

Using the framework of Griffiths et al. (2003) the present paper develops both mean and
s.d. charts for autocorrelated observations on a two-dimensional grid. For illustration purpose,
considering road pavement data on road corse thickness observed over two dimensional grid
(see Griffiths et al., 2003) the mean and standard deviation control charts are plotted using
modifying control limits based on AR(1) process in both the directions. Though we have
applied the theoretical results to road construction example, the results are applicable to more
processes such as monitoring rolling steel/metal to a target thickness, image analysis of spatial
quality of a product manufactured over time.
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2 Autocorrelated Observations on 2-D Grid

Suppose the sampling of points has been carried out on a two dimensional (2-D) grid of n = u.v
points (t, k), (t = 1, 2, . . . , u; k = r, 2r, . . . , vr), taken in mutually orthogonal directions. Here
u is the number of rows and v is the number of columns on the grid. The distance between
two neighboring cells in the direction of rows is taken as unity whereas the distance between
two neighboring cells in the direction of columns is taken as r. Further, xt,k represents the
observation on (t, k)th cell (t = 1, 2, . . . , u; k = r, 2r, . . . , vr). It has been assumed that the
observations follow AR(1) process in both the directions, given by

xt,k = µ+ φ1xt−1,k + εt,k

xt,k = µ+ φ2xt,k−r + ξt,k
(2.1)

where εt,k and ξt,k are iid random variables following normal distribution with mean 0 and
variances σ2

x/(1− φ2) and σ2
x/(1− φ2r) and σ2

x is the variance of xt,k’s (0 < σ2
x <∞). Further,

µ, φ1 and φ2 and are the parameters of the model. Let us assume that

φ2 = φsr1

so that

s =
lnφ2

r lnφ1

(2.2)

It is now possible to change the scale in the direction of columns and consider the distance
between neighboring cells as sr. Then the problem reduces to the problem with same autocor-
relation coefficient in two directions. Hence, without loss of generality, we assume that φ1 = φ
and φ2 = φr . We require the transformation of parameters from (φ1, φ2) to (φ, s) to accom-
modated the spatial autocorrelation among observations while constructing control limits.The
model (2.1), in terms of new parameters (φ, s) , reduces to

xt,k = µ+ φxt−1,k + εt,k

xt,k = µ+ φrxt,k−r + ξt,k
(2.3)

The distance between the points from where xt,k and xt+h,k+l have been taken, denoted by

d(h, l) is given by d(h, l) =
√

(h2 + l2r2). Hence, the correlation coefficient between xt,k and
xt+h,k+l is φd(h,l).

In practice, if φ1 and φ2 are unknown, we may estimate the value of s by replacing φ1 and
φ2 by their estimators in the expression (2.2) for s.

3 Control Chart for Mean and Standard Deviation

Let us write x(k) = (x1,k x2,k . . . xu,k)
′; k = 1, 2, . . . , v and

x =


x(1)

x(2)

...
x(v)


For obtaining the variance covariance matrix of the random vector x, we observe that

V (x(k)) = σ2
x


1 φ . . . φu−1

φ 1 . . . φv−2

...
...

. . .
...

φu−1 φu−2 . . . 1


= σ2

xΣ
(0) (say).

(3.1)
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The covariance matrix between the vectors x(k) and x(k+l) is obtained as

cov(x(k), x(k+l)) = σ2
x


φd(0,l) φd(1,l) . . . φd(u−1,l)

φd(1,l) φd(0,l) . . . φd(u−2,l)

...
...

. . .
...

φd(u−1,l) φd(u−2,l) . . . φd(0,l)


= σ2

xΣ
(l) (say).

(3.2)

Then the covariance matrix of the random vector x is given by

V (x) = σ2
x


Σ(0) Σ(1) . . . Σ(v−1)

Σ(1) Σ(0) . . . Σ(v−2)

...
...

. . .
...

Σ(v−1) Σ(y−2) . . . Σ(0)


= σ2

xΩ (say).

(3.3)

Now, the mean and variance of n observations xt,,k(t = 1, 2, . . . u; k = r, 2r, . . . , vr) are given by

x̄n =
1

n
l′nx

S2
n =

1

n− 1
x′Ax

where ln is a n× 1 vector with all elements one and

A = In −
1

n
lnl
′
n.

We can easily verify that Aln = 0.

3.1 Control Chart for Mean

To obtain control limits for the x̄-chart, we observe that

V ar(x̄n) =
σ2
x

n2
l′nΩln

=
σ2
x

n2

[
vl′uΣ

(0)lu + 2
v−1∑
j=1

(v − j)l′uΣ(j)lu

]

=
σ2
x

n

[
1 +

2

u

u−1∑
i=1

(u− i)φi +
2

v

v−1∑
j=1

(v − j)φj +
4

n

u−1∑
i=1

v−1∑
j=1

(u− i)(v − j)φd(i,j)
] (3.4)

Hence, the lower and upper 3σ control limits for the X̄ chart are given by

LCLφ = ¯̄xn − 3
sn√
n

[
1 +

2

u

u−1∑
i=1

(u− i)φi +
2

v

v−1∑
j=1

(v − j)φj +
4

n

u−1∑
i=1

v−1∑
j=1

(u− i)(v − j)φd(i,j)
]1/2

CLφ = ¯̄xn

UCLφ = ¯̄xn + 3
sn√
n

[
1 +

2

u

u−1∑
i=1

(u− i)φi +
2

v

v−1∑
j=1

(v − j)φj +
4

n

u−1∑
i=1

v−1∑
j=1

(u− i)(v − j)φd(i,j)
]1/2

(3.5)
In practice, if φ is unknown, we may replace it by its estimator.
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3.2 Control Chart for Standard Deviation

For obtaining the control limits of control chart for standard deviation, we have

E(S2
n) =

1

n− 1
E(x′Ax)

=
1

n− 1
trE(Axx′)

=
1

n− 1
tr

[
A

(
σ2Ω + µ2lnl

′
n

)]

=
σ2
x

n− 1
tr(AΩ)

=
σ2
x

n− 1

(
trΩ− 1

n
l′nΩln

)

=
σ2
x

n− 1

[
n− v

n
luΣ

(0)lu −
2

n

v−1∑
j=1

(v − j)luΣ(j)lu

]

=
σ2
x

n− 1

[
n− 1− 2

u

u−1∑
i=1

(u− i)φi − 2

v

v−1∑
j=1

(v − j)φj − 4

n

u−1∑
i=1

v−1∑
j=1

(u− i)(v − j)φd(i,j)
]

(3.6)
Again

E(S4
n) =

1

(n− 1)2
E(x′Ax)2

=
σ4
x

(n− 1)2

[
(trAΩ)2 + 2tr(AΩAΩ)

]
=

[
E(S2

n)

]2
+ V ar(S2

n)

(3.7)

Here the variance of S2
n is given by

V ar(S2
n) =

2σ4
x

(n− 1)2
tr(AΩAΩ)

=
2σ4

x

(n− 1)2

[
trΩ2 − 2

n
l′nΩ2ln +

1

n2

(
l′nΩln

)2
] (3.8)

Again, we have

trΩ2 = n+ 2v
u−1∑
i=1

(u− i)φ2i + 2u
v−1∑
j=1

(v − j)φ2j + 4
u−1∑
i=1

v−1∑
j=1

(u− i)(v − j)φ2d(i,j) (3.9)

Further, if ωij is the (i, j)th element of Ω , then

l′nΩ2ln =
n∑
i=1

n∑
j=1

n∑
k=1

ωikωkj (3.10)
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From (3.4), (3.9) and (3.10), substituting the values of different expressions in (3.8), we obtain

V ar(S2
n) =

2σ4
x

(n− 1)2

[
n+ 2v

u−1∑
i=1

(u− i)φ2i + 2u
v−1∑
j=1

(v − j)φ2j + 4
u−1∑
i=1

v−1∑
j=1

(u− 1)(v − j)φ2d(i,j)

− 2

n

n∑
i=1

n∑
j=1

n∑
k=1

ωikωkj +

{
1 +

2

u

u−1∑
u−i

(u− i)φi +
2

v

v−1∑
j=1

(v − j)φj

+
4

n

u−1∑
i=1

v−1∑
j=1

(u− i)(v − j)φd(i,j)
}2]

(3.11)
Utilizing (3.6), (3.7) and (3.11), we can obtain the value of E(S4

n).
Following Zhang (1998b, p. 565), we have

E(Sn) ≈ {E(S2
n)}1/2 (3.12)

V ar(Sn) ≈ V ar(S2
n)

4E(S2
n)

(3.13)

Utilizing (3.12) and (3.13), we obtain 3σ control limits for control chart for standard deviation
as

LCLφ = E(Sn)− 3
√
V ar(Sn) ≈ {E(S2

n)}1/2 − 3

√
V ar(S2

n)

4E(S2
n)

CLφ = E(Sn) ≈ {E(S2
n)}1/2

UCLφ = E(Sn) + 3
√
V ar(Sn) ≈ {E(S2

n)}1/2 + 3

√
V ar(S2

n)

4E(S2
n)

(3.14)

Since φ is, in general, unknown, we can replace φ by its estimator for obtaining the feasible
control limits.

4 Control Chart for Road Pavement Data

Griffiths et al. (2003) considered data on corse thickness of road pavement of the Barton High-
way (linking Yass and Canberra), Australia collected on a two dimensional grid and constructed
mean chart with modified control limits keeping the correlation structure among observations in
view. They modeled the correlation structures in observations using AR(1) process in one direc-
tion and ignored the autocorrelation across the pavement. For numerical illustration purpose,
we also consider the same set of data provided by Jim Ollis for 2185 m to 9120 m along three
strings namely left pavement (LPAV), center pavement (CPAV) and right pavement (RPAV).
For detailed illustration of data one may refer to Griffiths et al. (2003). The control limits for
mean chart and standard deviation (SD) chart are obtained considering autocorrelation struc-
ture, modeled using AR(1) process in both the directions. The control limits are evaluated
and charts are constructed using R language. The observations are divided into 9× 3 sampling
grids. For relative distance r = 0.76 (see Griffiths el al., 2003, p. 137), using (2.1) and (2.3),
the estimators of autoregressive parameters φ1 and φ2 are φ̂1 = 0.8222051 and φ̂2 = 0.2222104,
so that s = 10.11468. The modified control limits for mean chart, calculated using equation
(3.5) are LCLφ = −0.0067451, CLφ = 0.006905175 and UCLφ = 0.02055545. However, if we
ignore autocorrelation structure and assume observations to be independent, the control limits
are LCL = 0.0034470, CL = 0.006905175 and UCL = 0.01036329. Thus modified control
limits are 3.947317 times wider than the unmodified control limits.
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Figure 1: x̄ chart
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Figure 2: s chart
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Figure 1 elaborates plot of sample means and leads to the conclusion that the process is in
control for means. However, it can be easily verified that if we use unmodified control limits,
the process shows false out of control alarm. The modified control limits for s-chart, calcu-
lated using equation (3.14)are obtained as LCLφ = 0.0002082855, CLφ = 0.003969368 and
UCLφ = 0.00773045. However, if we ignore autocorrelation structure and assume observa-
tions to be independent, the control limits are LCL = 0.002719318, CL = 0.003313351 and
UCL = 0.003907384. Figure 2 gives plot of s-chart and it has been observed that all the points
lie within control bands except sample numbers 1 and 9, which are outside of the upper control
limit. It is interesting to observe that the majority of points are not only below the upper con-
trol limit but also the central line, leading to the conclusion that sample dispersion is small. As
pointed out by Ollis (1997), the two sample numbers (1 and 9) may involve some measurement
error(s) leading to such out of control behavior.

We also constructed control charts using 27× 3 sampling grids also and observed that the
process is in control for both mean and standard deviation. However, the detailed results are
not reported here. Our interesting observation is that in general for 27× 3 grids, control limits
for X̄ chart are narrower than control limits for 9 × 3 grids. However, for standard deviation
charts it is other way around, i.e., the control limits for 9× 3 grids are narrower. Further, for
making means of different grids to be uncorrelated, some gap between the grids is required and
that gap depends upon the correlation. For instance, if correlation is 0.82, a gap of twelve rows
between two grids reduces the correlation between nearest cells of two grids to 0.09242, which
may be considered as negligible.

5 Concluding Remarks

While constructing control charts for observations on two dimensions, we observe that if auto-
correlation structure has not been taken into account, the mean and standard deviation control
chart may lead to false out of control alarms. The autocorrelation structure may be mod-
eled through considering AR(1) process in both the directions. However, instead of modeling
autocorrelation structure in both the directions with two separate processes (or three in case
of three dimensional grid), alternatively spatial autoregressive (SAR) model defined over two
dimensional or three dimensional grids can be used. The results of the paper may be extended
if one gets autocorrelated observations on three dimensions.When process is out of control,
the average run length (ARL) properties of the control charts and the behavior of ARL, for
different values of φ and σ2 are under investigation.
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