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SUMMARY

Multivariate geostatistics is based on modelling all covariances between all possible combina-

tions of two or more variables and their locations in a continuously indexed domain. Multivariate

spatial covariance models need to be built with care, since any covariance matrix that is derived

from such a model has to be nonnegative-definite. In this article, we develop a conditional ap-

proach for model construction. Starting with bivariate spatial covariance models, we demonstrate

the approach’s generality, including its connection to regression and to multivariate models de-

fined by spatial networks. We demonstrate the fitting of such models on a minimum-maximum

temperature dataset.

Some key words: Asymmetry; Causal spatial models; Cross-covariance function; Kriging; Multivariate geostatistics.

1. INTRODUCTION

The conditional approach to building multivariate spatial covariance models was introduced

by Royle et al. (1999) in an edited volume of case studies in Bayesian statistics, although the

approach itself is relevant to all forms of inference. In that paper, pressure and wind fields are

modelled as a bivariate process over a region of the globe, with the wind process conditioned on

the pressure process through a physically motivated stochastic partial differential equation. This,

and a univariate spatial covariance model for the pressure process, defines valid covariance and

cross-covariance functions for the bivariate (wind, pressure) process. In general, such models

exhibit asymmetry; that is, for Y1(·) and Y2(·) defined on d-dimensional Euclidean space R
d,

cov(Y1(s), Y2(u)) 6= cov(Y2(s), Y1(u)); s, u ∈ R
d.

Of course, it is always true that cov(Y1(s), Y2(u)) = cov(Y2(u), Y1(s)).
There are commonly used classes of multivariate spatial models that assume symmetric, sta-

tionary dependence in the cross-covariances; that is, they assume C12(h) ≡ cov(Y1(s), Y2(s+
h)) = cov(Y2(s), Y1(s+ h)) ≡ C21(h); h ∈ R

d (e.g., Gelfand et al., 2004; Cressie & Wikle,

2011, Section 4.1.5; Genton & Kleiber, 2015). The most notable of these symmetric-cross-

covariance models is the linear model of coregionalization; see, for example, Journel & Hui-

jbregts (1978, Section III.B.3), Webster et al. (1994), Wackernagel (1995), and Banerjee et al.

(2004, Section 7.2). While symmetry may reduce the number of parameters or allow fast com-

putations, it may not be supported by the underlying science or by the data. Ver Hoef & Cressie

(1993) avoid making symmetry restrictions by working with (variance-based) cross-variograms.

In multivariate spatial-lattice models, Sain & Cressie (2007) and Sain et al. (2011) specifically in-
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2 N. CRESSIE AND A. ZAMMIT-MANGION

clude asymmetry parameters and use them to summarize the asymmetry in the data they analyse.

Martinez-Beneito (2013) gives a multivariate spatial-lattice model that can model asymmetry

between different spatial processes. Other approaches used to capture asymmetry are reviewed

in Genton & Kleiber (2015).

A key outcome of multivariate geostatistics is optimal spatial prediction of a hidden multi-

variate spatial process, Y (·) = (Y1(·), . . . , Yp(·))
T, based on multivariate noisy spatial observa-

tions, {Zq(sqi) : i = 1, . . . ,mq, q = 1, . . . , p}, of the hidden processes {Yq(·) : q = 1, . . . , p}.

Assuming additive measurement error, εq(·), we have data Zq(·) = Yq(·) + εq(·) at the mq data

locations, DO
q ≡ {sqi : i = 1, . . . ,mq}, for q = 1, . . . , p. Notice that we have not assumed that

the data for different spatial variables are collocated.

When just one of the processes, say Y1(·), is optimally predicted using the multivariate data

{Zq(sqi)}, the associated methodology is often called cokriging. Contributions to multivariate-

spatial-prediction methodology include those of Myers (1982, 1992), Ver Hoef & Cressie (1993),

Wackernagel (1995), Cressie & Wikle (1998), Gelfand et al. (2004), Majumdar & Gelfand

(2007), Finley et al. (2008), Huang et al. (2009), and Cressie & Wikle (2011, Section 4.1.5).

Genton & Kleiber (2015) give a comprehensive review of many different ways that valid

multivariate covariances can be constructed, with a brief mention of the conditional approach.

Further methodological developments of the conditional approach in geostatistics can be found

in Royle & Berliner (1999), and, for spatial-lattice data, Kim et al. (2001) use a conditional

approach to model both the multivariate and the spatial dependence. For (regular or irregular)

gridded spatial processes, Cressie & Wikle (2011, p. 234) clarify the discussion of the con-

ditional approach given in Gelfand et al. (2004). In this article we show that a large class of

multivariate spatial covariance models come naturally from conditional-probability modelling

on a continuous-spatially-indexed domain.

In Section 2, we present a construction of a bivariate spatial covariance function that is based

on conditional means and conditional covariances. Section 3 proves the existence of a bivari-

ate Gaussian process with this covariance function, gives a simple example of cokriging where

the continuous spatial index s ∈ R
1, and shows how to derive cross-covariance functions from

marginal covariance functions. The extension of the conditional approach to more than two vari-

ables is given in Section 4. Section 5 applies the methodology to meteorological data describing

minimum and maximum temperatures in the state of Colorado, U.S.A., on a given day. Finally,

Section 6 contains a brief discussion.

2. MODELLING JOINT DEPENDENCE THROUGH CONDITIONING

In this article, we introduce the conditional approach with the bivariate case, where

{(Y1(s), Y2(s)) : s ∈ D ⊂ R
d} are two co-varying spatial processes in a continuous-spatially-

indexed domain D contained in d-dimensional Euclidean space Rd; the multivariate case is con-

sidered in Section 4. As was seen in Section 1, it is sometimes convenient to write the individual

processes as Y1(·) and Y2(·), respectively. Then the joint probability measure of [Y1(·), Y2(·)]
can be written as,

[Y1(·), Y2(·)] = [Y2(·) | Y1(·)][Y1(·)], (1)

where we use the convention that [A | B] represents the conditional probability of A given B,

and [B] represents the marginal probability of B. The conditional probability in (1) is conditional

on the entire process Y1(·). In this article, we are particularly interested in Y2(s) | Y1(·) and

(Y2(s), Y2(u)) | Y1(·), where s, u ∈ D.



Multivariate spatial modelling 3

The order of the variables is a choice, but it is generally driven by the underlying science;

for example, Y1(·) might be a temperature field and Y2(·) might be a rainfall field, where Y2(·)
depends to some extent on Y1(·) through evapo-transpiration and the Penman-Monteith equation

(e.g., Beven, 1979). In Royle & Berliner (1999), Y1(·) was a pressure field and Y2(·) was a

wind field. For the multivariate case in Section 4, the ordering is generalized through a graphical

model.

Assume that E(Y1(·)) ≡ 0 ≡ E(Y2(·)), although we relax this in Section 3. Consider the fol-

lowing model for the first two conditional moments of [Y2(·) | Y1(·)]:

E(Y2(s) | Y1(·)) =

∫

D
b(s, v)Y1(v) dv; s ∈ D, (2)

cov(Y2(s), Y2(u) | Y1(·)) = C2|1(s, u); s, u ∈ R
d,

where b(·, ·) is any integrable function mapping from R
d × R

d into R, and C2|1(·, ·) is a univari-

ate covariance function that does not depend functionally on Y1(·). In (2), b(·, ·) may be obtained

from scientific understanding of how Y2(·) depends on Y1(·) (e.g., how wind depends on pres-

sure gradients; see Royle et al., 1999), and hence we call it an interaction function. It is not

a kernel since it can take both positive and negative values. Further, C2|1 in (2) is necessarily a

nonnegative-definite function, and there are many classes of such functions available (e.g., Chris-

takos, 1984; Cressie, 1993, Section 2.5; Banerjee et al., 2004, Section 2.2). Finally, suppose that

Y1(·) has covariance function C11(·, ·), which is also necessarily nonnegative-definite (i.e., is

valid). The conditional approach requires only specification of an integrable interaction function

and two valid univariate spatial covariance functions C2|1 and C11, leading to rich classes of

cross-covariance functions (e.g., Section 3·3).

Define Cqr(s, u) ≡ cov(Yq(s), Yr(u)), for q, r = 1, 2 and s, u ∈ D. From the two univariate

spatial covariance models, C2|1 and C11, we have:

C22(s, u) ≡ cov(Y2(s), Y2(u))

= E(cov(Y2(s), Y2(u) | Y1(·)) + cov(E(Y2(s) | Y1(·)), E(Y2(u) | Y1(·)))

= C2|1(s, u) +

∫

D

∫

D
b(s, v)C11(v, w)b(u,w) dvdw; s, u ∈ D. (3)

Importantly, the formulas for the cross-covariances are,

C12(s, u) = cov(Y1(s), Y2(u)) = cov(Y1(s), E(Y2(u) | Y1(·)))

=

∫

D
C11(s, w)b(u,w) dw; s, u ∈ D, (4)

and

C21(s, u) = C12(u, s); s, u ∈ D. (5)

Finally, recall that

C11(s, u) = cov(Y1(s), Y1(u)); s, u ∈ D, (6)

where C11(·, ·) is a given nonnegative-definite function. Then (3)–(6) specifies all covariances

{Cqr(·, ·)}, and any covariance matrix obtained from them should be nonnegative-definite; see

Section 3. From (4), C12(u, s) =
∫
D C11(u,w)b(s, w)dw 6= C12(s, u), in general; that is, the

conditional approach can capture asymmetry.
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3. BIVARIATE STOCHASTIC PROCESSES BASED ON CONDITIONING

3·1. Existence of a bivariate stochastic process

Let {(Y 0
1 (s), Y

0
2 (s)) : s ∈ R

d} be a bivariate Gaussian process with mean 0, covariance func-

tions C0
11(·, ·), C

0
22(·, ·), and cross-covariance functions C0

12(·, ·) and C0
21(·, ·). Then for any

pair of nonnegative integers n1, n2, such that n1 + n2 > 0; any locations {s1k : k = 1, . . . , n1},

{s2l : l = 1, . . . , n2}; and any real numbers {a1k : k = 1, . . . , n1}, {a2l : l = 1, . . . , n2},

var

(
n1∑

k=1

a1kY
0
1 (s1k) +

n2∑

l=1

a2lY
0
2 (s2l)

)

=

n1∑

k=1

n1∑

k′=1

a1ka1k′C
0
11(s1k, s1k′) +

n2∑

l=1

n2∑

l′=1

a2la2l′C
0
22(s2l, s2l′)

+

n1∑

k=1

n2∑

l′=1

a1ka2l′C
0
12(s1k, s2l′) +

n2∑

l=1

n1∑

k′=1

a2la1k′C
0
21(s2l, s1k′) ≥ 0. (7)

Conversely, suppose that the set of functions, {Cqr(·, ·) : q, r = 1, 2}, has the property that

C11 and C22 are nonnegative-definite; C12(s, u) = C21(u, s), for all s, u ∈ R
d; and (7) holds.

Then there exists a bivariate Gaussian process {(Y1(s), Y2(s)) : s ∈ R
d} such that for q, r = 1, 2,

cov(Yq(s), Yr(u)) = Cqr(s, u); s, u ∈ R
d.

The proof of this result relies on establishing the Kolomogorov consistency conditions (e.g.,

Billingsley, 1995, pp. 482–484) for the finite-dimensional distributions of

{Y1(s11), . . . , Y1(s1n1
), Y2(s21), . . . , Y2(s2n2

)},

which are specified to be Gaussian and whose second-order moments are defined by (3)–(6). The

two conditions are: the finite-dimensional distributions are consistent over marginalization; and

permutation of the variables’ indices does not change the probabilities of events.

Now consider {Cqr(·, ·)} defined by (3)–(6). The right-hand side of (3) consists of two terms:

The first is C2|1(·, ·), which is nonnegative-definite; and the second is a quadratic form that

is guaranteed to be nonnegative-definite, since C11(·, ·) in (6) is nonnegative-definite. Hence

C22(·, ·), which is the sum of these two terms, is nonnegative-definite. Because the finite-

dimensional distributions are Gaussian, the permutation-invariance condition is guaranteed by

(5), an expression for covariances.

It only remains to establish (7): Substitute (3) and (4) into the left-hand side of (7) to obtain

n2∑

l=1

n2∑

l′=1

a2la2l′C2|1(s2l, s2l′) +

∫

D

∫

D
a(s)a(u)C11(s, u) dsdu, (8)

where

a(s) ≡

n1∑

k=1

a1kδ(s− s1k) +

n2∑

l=1

a2lb(s2l, s); s ∈ R
d,

and δ(·) is the Dirac delta function. Since both C2|1 and C11 are nonnegative-definite, (8) is

nonnegative, which establishes (7).

Only nonnegative-definite functions for univariate processes are needed in the conditional

approach. Further, the finite-dimensional distribution of {Y1(s1k), Y2(s2l) : k = 1, . . . , n1; l =
1, . . . , n2} depends critically on the finite collection of interaction functions, {b(s2l, ·) : l =
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1, . . . , n2}; see (2). Recall that the only restriction on b(·, ·) is that it is a real-valued integrable

function.

In practice, any geostatistical software will discretize the continuous spatial domain D
onto a fine-resolution finite grid defined by the spatial-lattice, DL ≡ {s1, . . . , sn}, which

represents the centroids of the grid cells. That is, Yq(·) is replaced with the vector Yq ≡
(Yq(s1), . . . , Yq(sn))

T; q = 1, 2. Under this discretization, (3)–(6) become, respectively,

cov(Y2) =Σ2|1 +BΣ11B
T, (9)

cov(Y1, Y2) =Σ11B
T, (10)

cov(Y2, Y1) =BΣ11, (11)

cov(Y1) =Σ11, (12)

which were given by Cressie & Wikle (2011, p. 160). These same modelling equations were used

by Jin et al. (2005) for bivariate spatial-lattice data. Here, Σ2|1 and Σ11 are nonnegative-definite

n× n covariance matrices obtained from {C2|1(sk, sl) : k, l = 1, . . . , n} and {C11(sk, sl) :
k, l = 1, . . . , n}, respectively; B is the square n× n matrix obtained from {b(sk, sl) : k, l =
1, . . . , n}; and the 2n× 2n joint covariance matrix,

cov((Y T

1 , Y T

2 )T) =

[
Σ11 Σ11B

T

BΣ11 Σ2|1 +BΣ11B
T

]
, (13)

is nonnegative-definite.

The book by Banerjee et al. (2015, p. 273) states that it is meaningless to talk about the joint

distribution of Y2(s1) | Y1(s1) and Y2(s2) | Y1(s2), with which we agree. It also goes on to say

that this “reveals the impossibility of conditioning,” with which we disagree. We have shown

in this section that the conditional approach yields a well defined bivariate Gaussian process

(Y1(·), Y2(·)). This implies a well defined joint distribution of the random vectors Y1 and Y2
(obtained from discretization) given by [Y1, Y2] = [Y2 | Y1][Y1],

[Y2 | Y1] ∼ Gau(BY1,Σ2|1), (14)

and [Y1] ∼ Gau(0,Σ11), where “Gau” denotes the Gaussian distribution.

Equation (14) takes the form of a linear regression on the hidden variables. However, a regres-

sion of noisy observations from Y2 on noisy observations from Y1 is a different, errors-in-variable

model (Berkson, 1950). In (14), the conditioning is on the whole vector Y1, but any marginal or

conditional finite-dimensional distribution can be easily derived. For example, [Y2(s1) | Y1(s1)]
can be obtained from [Y1(s1), Y2(s1)]/[Y1(s1)], as follows. The numerator is

[Y1(s1), Y2(s1)] =

∫

R

· · ·

∫

R

[Y2(s1) | Y1][Y1]dY1(s2) . . . dY1(sn),

which from (13) is Gaussian with mean 0 and 2× 2 covariance matrix,
[

C11(s1, s1)
∑n

k=1C11(s1, sk)b1k∑n
k=1C11(s1, sk)b1k C2|1(s1, s1) +

∑n
k=1

∑n
l=1 b1kC11(sk, sl)b1l

]
,

where bik is the (i, k)th element of B in (9)–(11), and the denominator is Gau(0, C11(s1, s1)).
We have seen above that it is not just one or a few finite-dimensional distributions that define

the conditional approach, it is all of them. Further, these finite-dimensional distributions are for

the hidden processes Y1(·) and Y2(·) and not for the noisy incomplete data. Banerjee et al. (2015,

p. 273) state that the conditional approach is flawed and that kriging is not possible. In Section

3·2, we give a simple, one-dimensional example of the conditional approach defined by (3)–
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(6) and establish kriging and cokriging equations for predicting {Y1(s0) : s0 ∈ DL} from noisy

incomplete data, {Zq(sqi) : i = 1, . . . ,mq, q = 1, 2}.

The incorporation of non-zero mean functions in (Y1(·), Y2(·)) is straightforward. Let µ1(·)
and µ2(·) be two real-valued functions defined on R

d, and suppose that the finite-dimensional

Gaussian distributions obtained from {(Y1(s1k), Y2(s2l)) : k = 1, . . . , n1; l = 1, . . . , n2} have

means {(µ1(s1k), µ2(s2l)) : k = 1, . . . , n1; l = 1, . . . , n2}, respectively. Then the same method

of proof at the beginning of this section yields a bivariate Gaussian process (Y1(·), Y2(·)) with

mean functions (µ1(·), µ2(·)) and covariance functions {Cqr(·, ·) : q, r = 1, 2}. Covariates x1(·)
and x2(·) can then be incorporated through µq(s) = xq(s)

Tβq; s ∈ D, q = 1, 2, where β1 and

β2 are vectors of regression coefficients of possibly different dimension.

3·2. Cokriging using covariances defined by the conditional approach

Section 3·1 establishes the existence of the bivariate process (Y1(·), Y2(·)) with {Cqr(·, ·)}
given by (3)–(6), and hence we may use cokriging for multivariate spatial prediction in the pres-

ence of incomplete, noisy data.

The aim of cokriging is to predict, say, Y1(s0), s0 ∈ D, based on Z1 and Z2 (Cressie, 1993,

p. 138), where

Zq ≡ (Zq(s) : s ∈ DO
q )

T, for DO
q ≡ {sqi : i = 1, . . . ,mq}; q = 1, 2. (15)

Recall that Zq(sqi) = Yq(sqi) + εq(sqi), E(εq(·)) = 0, and var(εq(·)) = σ2
εq ; i =

1, . . . ,mq, q = 1, 2. Then, assuming E(Y1(·)) = 0 = E(Y2(·)), the best predictor for

Y1(s0) is the conditional mean, E(Y1(s0) | Z1, Z2). Under Gaussianity this is given by

Ŷ1(s0) ≡ E(Y1(s0) | Z1, Z2) =
[
cT11 c

T

12

][C11 + σ2
ε1Im1

C12

C21 C22 + σ2
ε2Im2

]−1[
Z1

Z2

]
, (16)

where for q, r = 1, 2,

cT1r ≡ (C1r(s0, sri) : i = 1, . . . ,mr),

Cqr ≡ (Cqr(sqi, srj) : i = 1, . . . ,mq; j = 1, . . . ,mr),

and Imq is the mq ×mq identity matrix. Expression (16) is called simple cokriging.

Whilst in some multivariate models, the matrices {Cqr : q, r = 1, 2} are known in closed form

(Genton & Kleiber, 2015), this is not necessarily so here. Cokriging using the conditional ap-

proach may require several (analytical or numerical) integrations over D in order to compute

{Cqr}. This reinforces our point that the conditional approach defines a model for a bivariate

stochastic process, not just a model for data defined on a collection of points within D.

To demonstrate the benefits of cokriging based on a bivariate spatial model defined by the con-

ditional approach, we simulated data in D ⊂ R
1, where both C11(·, ·) and C2|1(·, ·) are Matérn

covariance functions. That is,

C11(s, u) ≡
σ2
11

2ν11−1Γ(ν11)
(κ11|u− s|)ν11Kν11(κ11|u− s|), (17)

C2|1(s, u) ≡
σ2
2|1

2ν2|1−1Γ(ν2|1)
(κ2|1|u− s|)ν2|1Kν2|1(κ2|1|u− s|), (18)

where σ2
11, σ

2
2|1 denote the marginal variances, κ11, κ2|1 are scale parameters, ν11, ν2|1 are

smoothness parameters, and Kν is the Bessel function of the second kind of order ν. Specifi-

cally, we chose the domain D = [−1, 1] ⊂ R
1, and we discretized Y1(·) and Y2(·) into n = 200
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grid cells, each of length 0.01. Let DL be the set of locations at the centres of the cells; then

Y1 = (Y1(s) : s ∈ DL)T and Y2 = (Y2(s) : s ∈ DL)T. We generated Y1 and Y2 using Gaussian

distributions and (9)–(12), with σ2
11 = 1, σ2

2|1 = 0.2, κ11 = 25, κ2|1 = 75, ν11 = ν2|1 = 1.5, and

interaction function,

b(s, v) ≡

{
A{1− (|v − s−∆|/r)2}2; |v − s−∆| ≤ r
0; otherwise.

(19)

In (19), ∆ is a shift parameter that here we set equal to −0.3, to capture asymmetry; we also set

the aperture parameter r = 0.3, and the scaling parameter A = 5.

Finally, the data Z1 and Z2 in (15) were generated by adding independent Gaussian measure-

ment errors to Y1 and Y2 at locations DO
1 and DO

2 , respectively. We chose σ2
ε1 = σ2

ε2 = 0.25;

DO
2 = DL, so that Z2 is a noisy measurement of Y2 at every grid cell; and DO

1 ≡ DL ∩ [0, 1], so

that Z1 is a noisy measurement of only those components of Y1 in the positive grid cells.

The grid cells were used to define the discretized domain over which we carried out the numer-

ical integrations in (3) and (4). For example, C12(s0, u) ≃
∑n

k=1 ηkC11(s0, wk)b(u,wk), where

DL ≡ {wk : k = 1, . . . , n} and {ηk : k = 1, . . . , n} are the grid spacings; here η1 = η2 = · · · =
η200 = 0.01. More generally, when DL ⊂ D ⊂ R

d, s0, u, and {wk} are d-dimensional vectors

and {ηk} are d-dimensional volumes. The covariance matrix (13) is shown in Fig. 1, left panel,

where asymmetry is clearly present. Since ∆ < 0, the top-left corner of Σ22 reduces to that of

Σ2|1, which is due to asymmetry in the interaction function b(s, v).
The benefits of cokriging become apparent when the prediction of Y1(s0) given Z1 and Z2 is

compared to the prediction of Y1(s0) given only Z1 (i.e., univariate kriging). In our simulation,

we used the cokriging equation (16) to obtain Ŷ1 ≡ (Ŷ1(s0) : s0 ∈ DL)T based on the simulated

observations Z1 and Z2. We compared Ŷ1 to the (univariate) kriging predictor Ỹ1 based only

on data Z1, where Ỹ1 ≡ (Ỹ1(s0) : s0 ∈ DL)T and Ỹ1(s0) ≡ cT11(C11 + σ2
ε1Im1

)−1Z1. As seen

in Fig. 1, right panel, the cokriging predictor Ŷ1 is representative of the true process Y1 even

on the negative grid cells where it is not observed. However, the kriging predictor Ỹ1 can only

shrink to the mean, E(Y1(·)) = 0, in the spatial regions where there are no observations. While

it might seem more natural to predict Y2(·), since our model is based on [Y2(·) | Y1(·)], we chose

to predict Y1(·) to illustrate that cokriging on either variable is possible.

3·3. Deriving classes of cross-covariance functions from marginal covariance functions

The conditional approach may also be used to complement the joint approach to constructing

multivariate covariance functions. In particular, Genton & Kleiber (2015) posed an open problem

that seems difficult when using the joint approach; “[G]iven two marginal covariances, what is

the valid class of possible cross-covariances that still results in a nonnegative definite structure?”.

A straightforward answer to this question is available through the conditional approach. The class

of cross-covariance functions is given by (4) for any integrable function b(s, v) such that the

function C2|1(·, ·) obtained from (3) is nonnegative-definite. This is potentially a very rich class

of cross-covariance functions, and answering the question reduces to verifying which choice of

b(·, ·) in (3) yields a nonnegative-definite C2|1(·, ·).

For example, consider the stationary case in D = R
2 where we have stationary covariance

functions C11(h), C2|1(h), and interaction function b(s, v) = bo(v − s). Then from (3),

C2|1(h) = C22(h)−

∫

R2

∫

R2

bo(ṽ)bo(w̃)C11(h− ṽ + w̃) dṽdw̃.
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Fig. 1. Cokriging using spatial covariances defined by the conditional approach. Left panel: The covariance matrix
(13). Right panel, top: The simulated observations Z1 (open circles) and Z2 (dots). Right panel, bottom: The hidden

value Y1 (solid line), the kriging predictor Ỹ1 (dashed line), and the cokriging predictor Ŷ1 (dotted line).

Let ω ∈ R
2 denote spatial frequency, and let Γ11(ω),Γ22(ω), and Bo(ω) be the Fourier trans-

forms of C11(h), C22(h), and bo(h), respectively. Then, for C2|1(h) to be a valid covariance

function, it is required that Γ22(ω)−Bo(ω)Bo(−ω)Γ11(ω) be nonnegative and integrable over

ω ∈ R
2 (Cressie & Huang, 1999; Gneiting, 2002). The inequality is trivial if Γ11(ω) = 0; hence

consider those ω ∈ Ω for which

Bo(ω)Bo(−ω) ≤ Γ22(ω)/Γ11(ω), (20)

where Γ11(ω) > 0. Recall that C11(h) and C22(h) are covariance functions and hence, necessar-

ily, Γ11(ω) ≥ 0 and Γ22(ω) ≥ 0.

Any Bo(·) that satisfies (20) gives the required result, since then finiteness follows from∫
Γ22(ω) dω < ∞ being an upperbound on the integral,

∫
Γ22(ω)−Bo(ω)Bo(−ω)Γ11(ω) dω.

In Appendix 1, we show how a class of valid Matérn cross-covariance functions developed by

Gneiting et al. (2010) can be obtained from (20).

4. MULTIVARIATE SPATIAL MODELS THROUGH CONDITIONING

4·1. Definition of cross-covariance functions

In this section, we extend the conditional approach from the bivariate to the multivariate case.

Initially, we work with the variables in their original ordering and subsequently show how graph-

ical models define the general case. Now, [Y1(·), . . . , Yp(·)] can be decomposed as,

[Yp(·) | Yp−1(·), Yp−2(·), . . . , Y1(·)][Yp−1(·) | Yp−2(·), . . . , Y1(·)] . . . [Y1(·)]. (21)
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First, we set cov(Y1(s), Y1(u)) = C11(s, u); s, u ∈ R
d. Analogous to the bivariate case p = 2,

we define the first two conditional moments of Yq(·), for q = 1, . . . , p, as

E(Yq(s) | {Yr(·) : r = 1, . . . , (q − 1)}) =

q−1∑

r=1

∫

D
bqr(s, v)Yr(v)dv; s ∈ D, (22)

cov(Yq(s), Yq(u) | {Yr(·) : r = 1, . . . , (q − 1)}) = Cq|(r<q)(s, u); s, u ∈ R
d, (23)

where {bqr(·, ·) : r = 1, . . . , (q − 1); q = 2, . . . , p} are integrable functions that describe the

conditional relationship of the rth process on the qth process, for r < q.

As a result of the decomposition in (21), we obtain from (22) and (23) the following expression

for the marginal covariance functions. For q = 1, . . . , p,

Cqq(s, u) ≡ cov(Yq(s), Yq(u))

= Cq|(r<q)(s, u) +

q−1∑

r=1

q−1∑

r′=1

∫

D

∫

D
bqr(s, v)Crr′(v, w)bqr′(u,w)dvdw, (24)

and for r = 1, . . . , q − 1 the cross-covariance functions,

Crq(s, u) ≡ cov(Yr(s), Yq(u)) =

q−1∑

r′=1

∫

D

∫

D
bqr′(u,w)Crr′(s, w)dw. (25)

Expressions (24) and (25) depend on Crr′ , for r, r′ < q, which are defined iteratively: Starting

with q = 2, one obtains C22, C12, and C21 in terms of C11. The same idea is then repeated for

q = 3, . . . , p.

4·2. Existence of a multivariate process

Following the discussion in Section 3·1, the existence of the p-variate Gaussian process fol-

lows by showing that

var




p∑

q=1

nq∑

k=1

aqkYq(sqk)


 ≥ 0, (26)

for any real numbers {aqk : k = 1, . . . , nq; q = 1, . . . , p}, any nonnegative integers {nq : q =
1, . . . , p} such that n1 + · · ·+ np > 0, and any {sqk : k = 1, . . . , nq; q = 1, . . . , p}. In Ap-

pendix 2, we demonstrate that (26) is equal to

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′) +

p−1∑

q=1

p−1∑

r=1

∫

D

∫

D
aq(s)ar(u)Cqr(s, u)dsdu, (27)

where

aq(s) ≡

( nq∑

k=1

aqkδ(s− sqk) +

np∑

m=1

apmbpq(spm, s)

)
. (28)

The nonnegativity of the first term in (27) follows by assumption, and the nonnegativity of the

second term follows by induction; see Appendix 2.

This result implies that a multivariate spatial Gaussian model constructed using the conditional

approach (22) and (23) exists, provided that the univariate covariance functions, C11(·, ·) and
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{Cq|(r<q)(·, ·) : q = 2, . . . , p}, are valid and the interaction functions, {bqr(·, ·) : r = 1, . . . , q −
1; q = 2, . . . , p}, are integrable.

4·3. A graphical-model representation

Because any joint model can be decomposed using (21), the existence result in Section 4·2
holds for systems that do not exhibit any particular structure, and recall that the univariate con-

ditional processes themselves need not be isotropic nor stationary. Here, we give examples of

implementation of the conditional approach, analogous to particular constructions of multivari-

ate statistical models found in non-spatial settings (e.g., Cox & Wermuth, 1996).

Consider the trivariate case of p = 3; clearly the decomposition (21) is not unique: The joint

probability measure can be written as

[Y1(·), Y2(·), Y3(·)] = [Y3(·) | Y1(·), Y2(·)][Y2(·) | Y1(·)][Y1(·)],

and equally,

[Y1(·), Y2(·), Y3(·)] = [Y1(·) | Y2(·), Y3(·)][Y2(·) | Y3(·)][Y3(·)].

Indeed there are a total of six such possible models (in the bivariate case, there are two possible

models), many of which are not physically meaningful.

When building classes of models, it is generally better to have more choice, but in the con-

ditional approach we can be guided by a graph structure. For example, in the bivariate case

considered by Royle et al. (1999), node 1 is defined by the pressure field Y1(·) and node 2 is

defined by the wind field Y2(·). The direction of the edge in the directed graph is clearly from

node 1 to node 2 and not the other way around, since wind fields are the result of differential

pressures in the atmosphere.

As in multivariate modelling (Cox & Wermuth, 1996) and subsequently in network analysis

(e.g., Lauritzen, 1996; Kolaczyk, 2009), specification of the graph structure for a multivariate

spatial model will be guided by a desire for a parsimonious model. One example of a parsimo-

nious conditionally specified model is the spatial-moving-average model of Ver Hoef & Barry

(1998), where p = 5. Ver Hoef & Barry (1998) construct a bivariate model (Y1(·), Y2(·)) by tak-

ing moving averages of a combination of correlated processes (Y3(·), Y4(·), Y5(·)), where the

following decomposition is implicitly assumed,

[Y1(·), . . . , Y5(·)] = [Y1(·) | Y3(·)][Y2(·) | Y4(·)][Y3(·) | Y5(·)][Y4(·) | Y5(·)][Y5(·)]. (29)

In (29), [Y1(·) | Y3(·)] and [Y2(·) | Y4(·)] are constructed using moving-average functions of the

form b(s, v) = bo(v − s) in (2); [Y3(·) | Y5(·)] and [Y4(·) | Y5(·)] are Dirac delta functions; and

Y5(·) is a white-noise process. The general decomposition of [Y1(·), . . . , Yp(·)] using directed

graphs is given by Bishop (2006, p. 362). Should a part of the graph be undirected, it is natural to

order those processes from less smooth to more smooth, motivated by the form of (3) and (24).

An important special case is commonly seen in studies of spatio-temporal phenomena. In

such settings, each process is indexed by time t = 1, . . . , p, and nodes 1, . . . , p are connected

successively by directed edges. This results in the Markov factorization:

[Y1(·), . . . , Yp(·)] = [Y1(·)]

p∏

t=2

[Yt(·) | Yt−1(·)]. (30)

4·4. The conditional approach provides spatial-model flexibility

It is easy to see that the number of covariance and interaction functions that need to be specified

is p(p+ 1)/2, which is also the number of elements in the lower triangle of a p× p matrix
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of cross-covariance functions. Hence, the modeller using the conditional approach provides up

to p(p+ 1)/2 univariate nonnegative-definite and integrable functions in order to specify the

p(p+ 1)/2 marginal and cross-covariance functions. Critically, specification of any one function

does not constrain specification of the others. This flexibility is not necessarily present in other

commonly used approaches to construction of multivariate spatial models. For example, both

in the convolution method of Majumdar & Gelfand (2007), and in the standard linear model of

coregionalization, the user is allowed a choice of at most p covariance functions.

5. BIVARIATE SPATIAL MODELS OF TEMPERATURE DATA: THE CONDITIONAL APPROACH

5·1. The data

We demonstrate the flexibility of the conditional approach on the bivariate mini-

mum/maximum temperature dataset used in Genton & Kleiber (2015). The data are minimum-

temperature and maximum-temperature residuals in the state of Colorado, U.S.A. (following

the removal of the state-wide mean) obtained from measurements taken on September 19, 2004

at 94 weather stations in Colorado; that is, m1 = m2 = m = 94 and DO
1 = DO

2 ≡ DO. Mini-

mum temperatures are likely to have occurred in the early-morning hours of a given day, with

the maximum temperatures in the afternoon of the same day. It is natural then to assume that

the maximum-temperature residual later in the day is partially determined by the minimum-

temperature residual in the early morning. Consequently, time induces a bivariate dependence

that can be modelled naturally using a conditional approach.

5·2. The model

In this subsection, we propose a Bayesian hierarchical model with spatial dependence in

the process model and prior distributions on the unknown parameters. Let Y1(·) and Y2(·)
denote the true minimum-temperature and maximum-temperature residuals, respectively. Let

ε(·) ≡ (ε1(·), ε2(·))
T be the bivariate process of measurement errors or potential measure-

ment errors, and assume that the data or potential data, Z(·) ≡ (Z1(·), Z2(·))
T, are related to

Y (·) ≡ (Y1(·), Y2(·))
T through, Z(·) = Y (·) + ε(·). The two measurement errors are assumed

to have no spatial dependence, but they could be correlated, which we model through

cov(ε(s)) = σ2
ε

[
1 ρε
ρε 1

]
, for ρε ∈ (−1, 1) and s ∈ D.

In the conditional approach, we need to specify the univariate covariance functions, C11(s, u)
and C2|1(s, u), and the integrable interaction function b(s, v). We let the covariance functions

be isotropic Matérn covariance functions given by (17) and (18). The smoothness parameters

ν11 and ν2|1 are set equal to 1.5, to give covariance functions that are a little smoother than the

exponential covariance function. We let b(s, v) be a function of displacement, h ≡ v − s, and

recall that bo(h) ≡ b(s, v). We write the three different models that we fit, as:

Model 1 (independence): bo(h) ≡ 0,
Model 2 (pointwise dependence): bo(h) ≡ Aδ(h),

Model 3 (diffused dependence): bo(h) ≡

{
A{1− (‖h−∆‖/r)2}2; ‖h−∆‖ ≤ r
0; otherwise,

where ∆ = (∆1,∆2)
T is a shift parameter that captures asymmetry. In Model 3, bo(h) is a shifted

bisquare function in R
2, which is analogous to (19) given in R

1.

We discretized both Y1(·) and Y2(·) using a triangulated grid with n1 = n2 = n = 968 ver-

tices each. Here, the vertices of the grid define DL, an irregular spatial lattice; see Fig. 2.
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Fig. 2. Left panel: State boundaries in a region of the U.S.A. (state boundaries are given by dashed lines), with the
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Fig. 3. Results for Model 3. Left panel: Interpolated maps in degrees Celsius (degC) of E(Y1 | Z1, Z2) and
E(Y2 | Z1, Z2). Right panel: Prior (light grey) and posterior (dark grey) median (solid line) and inter-quartile
ranges (enclosed by dashed lines) of the interaction function bo(·) of Model 3, along a unit vector e originating

at Denver (DE) in the direction of Fort Collins (FC).

Under the chosen triangulation, the integral in (2) is approximated as E(Y2(sl) | Y1(·)) ≃∑n
k=1 ηkb(sl, vk)Y1(vk), where in this case {ηk : l = 1, . . . , n} are the areas of the Voronoi tes-

sellations constructed from the triangulated grid (e.g., Lee & Schachter, 1980).

5·3. The parameters

We employ a Bayesian hierarchical model and place prior distributions on transformations of

the parameters, with each transformation chosen to account for the range of its respective param-

eter. The prior distributions and transformations are summarized in Table 1 (given in Appendix

3). Elicited prior distributions reflect some prior understanding of the problem: For example, we

can reasonably expect that the error standard deviation σε will lie between 0.5 and 2 degrees
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Celsius, and thus we place a Gamma prior on σ−2
ε such that q0.05(σε) = 0.05 and q0.95(σε) = 2,

where qx(·) denotes the xth quantile of its argument.

5·4. Inference and model comparison

For posterior inference we employed a Gibbs sampler. Through the use of conjugate priors,

we obtained conditional distributions of standard form for σ2
ǫ , Y, A, σ

2
11, and σ2

2|1 (see Table 1,

Appendix 3), from which we were able to sample directly. Since the conditional distributions

for the remaining parameters, namely ρε, κ11, κ2|1, r,∆1, and ∆2, are nonstandard, we sampled

from these using a slice sampler (Neal, 2003). Slice samplers tend to be more efficient than sim-

ple Metropolis samplers, as they effectively alter the magnitude of the steps taken at each point in

the chain by adapting to the local properties of the density function. However, the computational

effort for generating one sample is larger than for a standard Metropolis sampler.

We generated N = 50, 000 samples from the slice-within-Gibbs Markov chain Monte Carlo

scheme, discarded the first 1,000 for burn-in, and then we thinned by only recording every 100th

sample. Slice sampling was carried out using the stepping-out method (Neal, 2003, Section

4) with an interval width adapted during the burn-in period. We used marginal samplers for

ρε, κ11, κ2|1, while for Model 3 we sampled r,∆1, and ∆2 jointly since these parameters can

be expected to be highly correlated. For the slice samplers, we used the R (R Core Team, 2014)

package slice, available from the personal home page of Jonathan C. Rougier, University of

Bristol.

A summary of our inferences on parameters is given in Table 2 (in Appendix 3), and the poste-

rior expectations of Y1(s) and Y2(s) are shown in the left panel of Fig. 3. There the influence of

the Rocky Mountains on the temperature residuals is apparent. In Fig. 3, right panel, we plot the

interquartile ranges of the prior [bo(he)] and the posterior, [bo(he) | Z1, Z2], where e is the unit

vector originating from Denver in the direction of Fort Collins. The posterior distribution of the

interaction function along this direction can be clearly distinguished from the prior distribution,

suggesting that Bayesian learning has uncovered substantial interaction between maximum tem-

perature and minimum temperature at proximal locations. Model 3, for different choices of bo(·),
has in fact often been used to study the dynamics in spatio-temporal processes (Kot & Schaffer,

1986; Wikle, 2002).

The Deviance Information Criterion (DIC, Spiegelhalter et al., 2002) for the three models is

given in the lower row of Table 2 in Appendix 3. The DIC penalizes a model for poor fit and

model complexity; the lower the value, the more favourable the model. In our case, DIC is highest

for Model 1 and lowest for Model 3, indicating that there are important bivariate interactions

being captured by the latter. Interestingly, the DIC for Models 2 and 3 are comparable despite

inferences on κ2|1 being very different for the two. One definition of the range parameter is the

Euclidean distance, ‖u− s‖, where C2|1(s, u) = 0.1σ2
2|1; Lindgren et al. (2011) approximate it

as λ2|1 ≃ (8ν2|1)
1/2/E(κ2|1 | Z1, Z2). Model 2 essentially describes Y2(·) as a scaled version

of Y1(·) with λ2|1 = 5.19 degrees longitude/latitude. In contrast, Model 3 describes Y2(·) as a

diffused version of Y1(·) with λ2|1 = 0.73 degrees longitude/latitude.

The models considered in this application range in complexity. The conditional approach al-

lows for a quick analysis of various models with different spatial-dependence characteristics,

solely by varying b(·, ·). It is easy to envision more complicated forms of the interaction function

b(·, ·), including ones motivated by causative models of how Y2(·) depends on Y1(·).
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6. DISCUSSION

The conditional approach can be modified easily for processes indexed on different spatial

domains: {Y1(s) : s ∈ D1} and {Y2(s) : s ∈ D2}, for D1, D2 ∈ R
d. Equation (2) becomes,

E(Y2(s) | Y1(·)) =

∫

D1

b(s, v)Y1(v)dv; s ∈ D2.

For example, Cressie & Wikle (2011, p. 287) illustrate bivariate spatial dependence between

Mallard breeding bird pairs in the Prairie Pothole region of North America and the El Niño

phenomenon in the tropical Pacific Ocean.

In the example given in Section 5, we fitted a Bayesian hierarchical model by putting priors

on the parameters in C11(h), C2|1(h), and the interaction function bo(h). Alternatively, for an

empirical hierarchical model, the parameters are considered fixed but unknown; they are then es-

timated and substituted into the cokriging and kriging equations given in Section 3·2. In this case,

restricted maximum likelihood estimation is recommended. Numerically, this may be achieved

by an expectation-maximization algorithm or a gradient search.

Even if the parameters are known or estimated offline, spatial or spatio-temporal inference

with multivariate models can remain computationally challenging. When treating all variates

simultaneously in joint form, sparse formulations and sparse linear-algebraic methods can greatly

facilitate the computation (e.g., Zammit-Mangion et al., 2015). Sparseness is guided by graphical

representations, and in this sense our multivariate spatial models are a combination of a directed

acyclic graph on the indices of the individual processes and geostatistical covariance functions

on the resulting conditional processes.

By constructing models through conditioning, we obtain graphical representations for which

exact inference through sequential algorithms generally exist. We have already visited the ubiqui-

tous Markov chain in (30), which can be tackled with the iterative Rauch-Tung-Striebel smoother

(e.g., Rauch et al., 1965). For more general constructions, such as trees or polytrees, the sum-

product or peeling algorithm may be used for exact inference. When likelihoods associated with

some or all of the processes in {Yq : q = 1, . . . , p} are intractable, approximate message passing

may be used to keep the computations tractable (e.g., Heskes & Zoeter, 2002), such as when the

data model for Zq(·) is a spatial Poisson point process and Yq(·) is used to model the log-intensity

of the process.

Reproducible code and data for the studies in Section 3·2 and Section 5 are available as part

of the R package bicon from the second author’s website on github.
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APPENDIX 1

A class of Matérn cross-covariance functions consistent with marginal Matérn covariance functions

Let C11(h), C22(h), and bo(h) be isotropic Matérn covariance functions on R
2 and, for simplicity,

assume that they all have the same scale κ. Then, using obvious notation, their Fourier transforms are

given by

Bo(ω) = σ2
b

Γ(νb + 1)κ2νb

πΓ(νb)
(κ2 + ‖ω‖2)−νb−1,

Γ11(ω) = σ2
11

Γ(ν11 + 1)κ2ν11

πΓ(ν11)
(κ2 + ‖ω‖2)−ν11−1,

Γ22(ω) = σ2
22

Γ(ν22 + 1)κ2ν22

πΓ(ν22)
(κ2 + ‖ω‖2)−ν22−1.

For C21(·) and C12(·) to be valid cross-covariance functions, it is required that Γ22(ω)−
Bo(ω)Bo(−ω)Γ11(ω) ≥ 0, and hence that

σ4
b ≤

π2σ2
22

σ2
11

1

ν2bκ
4νb

ν22κ
2ν22

ν11κ2ν11

(κ2 + ‖ω‖2)2+2νb+ν11−ν22 . (A1)

It can be easily shown that the inequalities,

νb ≥ (ν22 − ν11 − 2)/2, (A2)

σ2
b ≤ 2π

σ22

σ11

1

ν22 − ν11 − 2

κν22

κν11κ2νb

(
ν22
ν11

) 1

2

, (A3)

are sufficient for (A1) to hold. Then, from (4), C12(h) is also a Matérn covariance function with variance

σ2
12 =

1

πκ2

νbν11
νb + ν11 + 1

σ2
bσ

2
11, (A4)

and smoothness ν12 ≡ νb + ν11 + 1. Hence, from (A2),

ν12 ≥ (ν11 + ν22)/2. (A5)

Now consider the bound on the smoothness,

ν12 = (ν11 + ν22)/2, (A6)
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which is obtained from the bound, νb = (ν22 − ν11 − 2)/2, in (A2). An inequality for the variance σ2
12 is

then obtained by substituting this value of νb and the inequality (A3) into (A4):

σ2
12 ≤ 2σ11σ22

(ν11ν22)
1/2

ν11 + ν22
. (A7)

The conditions (A6) and (A7) are those that Gneiting et al. (2010) impose in order to construct parsimo-

nious bivariate Matérn models. Clearly, these are more restrictive than our conditions (A2) and (A3).

Generalizing these ideas to arbitrary scale parameters κ11, κ22, κb, results in a similar problem as that

encountered in the full bivariate Matérn model in R
d of Gneiting et al. (2010), in the sense that one needs

to find a κb and νb such that the inequality,

(κ2
b + ‖ω‖2)2νb+2 ≥

(κ2
22 + ‖ω‖2)ν22+1

(κ2
11 + ‖ω‖2)ν11+1

,

is satisfied for all ω ∈ R
d. In this general case it is not possible to find inequality constraints for κb and νb

without further assumptions.

APPENDIX 2

Proof for multivariate-process existence

Here, we prove by induction that (26) holds for for any real numbers {aqk : k = 1, . . . , nq; q =
1, . . . , p}, any nonnegative integers {nq : q = 1, . . . , p} such that n1 + · · ·+ np > 0, and any {sqk : k =
1, . . . , nq; q = 1, . . . , p}. We have already shown, through (8), that there exists a bivariate stochastic pro-

cess and hence the variance of any linear combination of the two processes is nonnegative. Now, assume

that (Y1(·), . . . , Yp−1(·))
′ is a well defined (p− 1)-variate stochastic process. We re-write (26) as:

var

(
p−1∑

q=1

nq∑

k=1

aqkYq(sqk) +

np∑

m=1

apmYp(spm)

)
.

Then, following the definitions for the marginal and cross-covariances in (24) and (25) and using stan-

dard identities, we obtain the following expression for (26):

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′)

+

p−1∑

q=1

p−1∑

r=1

np∑

m=1

np∑

m′=1

apmapm′

∫

D

∫

D

bpq(spm, v)Cqr(v, w)bpr(spm′ , w)dvdw

+

p−1∑

q=1

p−1∑

r=1

nq∑

k=1

np∑

m′=1

aqkapm′

∫

D

bpr(spm′ , w)Cqr(sqk, w)dw

+

p−1∑

q=1

p−1∑

r=1

nq∑

k′=1

np∑

m=1

aqk′apm

∫

D

bpq(spm, v)Cqr(v, srk′)dv

+

p−1∑

q=1

p−1∑

r=1

nq∑

k=1

nr∑

k′=1

aqkark′Cqr(sqk, srk′),
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which can be reduced to

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′)

+

p−1∑

q=1

p−1∑

r=1

∫

D

∫

D

(
nq∑

k=1

aqkδ(s− sqk) +

np∑

m=1

apmbpq(spm, s)

)

×

(
nq∑

k′=1

ark′δ(u− srk′) +

np∑

m′=1

apm′bpr(spm′ , u)

)
Cqr(s, u)dsdu

=

np∑

m=1

np∑

m′=1

apmapm′Cp|(q<p)(spm, spm′) +

p−1∑

q=1

p−1∑

r=1

∫

D

∫

D

aq(s)ar(u)Cqr(s, u)dsdu. (B1)

The first term in (B1) is nonnegative by assumption while the second term is nonnegative since

(Y1(·), . . . , Yp−1)
′ is well defined.

APPENDIX 3

Prior specifications and posterior distributional summaries

Table 1. Parameters used in Section 5 and the models in which

they appear. Each parameter, θ, is (possibly) transformed to g(θ),
whose prior is given in the last column. Transformations are used to

achieve the desired range. The notation Gau(µ, σ2) is used to de-

note a Gaussian distribution with mean µ and variance σ2, whose

cumulative distribution function is Φ((· − µ)/σ), and Γ(α, β) is

used to denote a Gamma distribution with shape α and rate (inverse

scale) β

Model Parameter, θ Range Transformation, g(θ) Prior over g(θ)
1,2,3 σ2

ε R
+ (θ)−1 Γ(1.79.1.10)

1,2,3 ρε (−1, 1) Φ−1((θ + 1)/2) Gau(0.00, 1.00)
1,2,3 σ2

11 R
+ (θ)−1 Γ(0.84, 2.68)

1,2,3 σ2
2|1 R

+ (θ)−1 Γ(0.84, 2.68)

1,2,3 κ11 R
+ log(θ) Gau(0.69, 1.00)

1,2,3 κ2|1 R
+ log(θ) Gau(0.69, 1.00)

2, 3 A R θ Gau(0.00, 0.04)
3 r R

+ log(θ) Gau(1.00, 0.25)
3 ∆1 R θ Gau(0.00, 0.25)
3 ∆2 R θ Gau(0.00, 0.25)
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Table 2. Posterior distributional summaries for all unknown parameters for

each model. Entries for all except the last row are in the format median

[lower quartile, upper quartile]

Parameter Model 1 Model 2 Model 3

σ2
ε 9.21 [8.54, 10.04] 9.3 [8.6, 10.21] 8.9 [8, 9.63]

ρε −0.14 [−0.23, −0.06] −0.18 [−0.26, −0.11] −0.16 [−0.24, -0.08]

σ2
11 17.7 [13.51, 25.6] 20.5 [14.54, 29.53] 20.81 [15.13, 29.37]

σ2
2|1 26.2 [17.43, 41.09] 14.2 [8.46, 26.58] 4.02 [2.61, 6.14]

κ11 0.96 [0.74, 1.26] 1 [0.8, 1.26] 1.03 [0.83, 1.25]

κ2|1 0.81 [0.63, 1] 0.62 [0.46, 0.81] 3.65 [1.16, 6.72]

A 0.44 [0.3, 0.55] 0.32 [0.24, 0.4]

r 2.15 [1.82, 2.73]

∆1 0.04 [−0.09, 0.14]

∆2 −0.07 [−0.726, 0.12]

DIC 990.84 985.17 982.45
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