
Copyright © 2008 by the Centre for Statistical & Survey Methodology, UOW. Work in progress, 
no part of this paper may be reproduced without permission from the Centre. 
 

Centre for Statistical & Survey Methodology, University of Wollongong, Wollongong NSW 
2522. Phone +61 2 4221 5435, Fax +61 2 4221 4845. Email: anica@uow.edu.au 

 
 
 
 

Centre for Statistical and Survey Methodology 

 

The University of Wollongong 
 
 

Working Paper 
 
 

12-12 
 
 

M-Quantile Regression for Binary Data with Application to Small 

Area Estimation 

 
 

  Ray Chambers, Nicola Salvati and Nikos Tzavidis  
 

mailto:anica@uow.edu.au�


Biometrika (2012), xx, x, pp. 1–24
C© 2007 Biometrika Trust
Printed in Great Britain

M-Quantile Regression for Binary Data with Application
to Small Area Estimation

BY RAY CHAMBERS

Centre for Statistical and Survey Methodology,
University of Wollongong, New South Wales 2522, Australia ray@uow.edu.au

NICOLA SALVATI

Dipartimento di Statistica e Matematica Applicata all’Economia,
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SUMMARY

M-quantile regression models are a robust and flexible alternative to random effects models,
particularly in small area estimation. However quantiles, and more generally M-quantiles, are
only uniquely defined for continuous variables. In this paper we extend the M-quantile regression
approach to binary data, and more generally to count data. This approach is then applied to
estimation of a small area proportion, where a popular alternative approach is to use a plug-
in version of the Empirical Best (EB) predictor based on a generalised linear mixed model for
the underlying binary variable. Results from both model-based and design-based simulations
comparing the binary M-quantile and the plug-in EB predictors demonstrate the usefulness of
the M-quantile approach in this case. The paper concludes with two illustrative applications.
The first addresses estimation of the number of unemployed people aged 16 and above resident
in the Unitary Authorities and Local Authority Districts of Great Britain. The second considers
estimation of the number of poor households in each of the Local Labour Systems of the Tuscany
region of Italy.

Some key words: Influence function; M-estimation; Bootstrap methods; Simulation experiments.

1. INTRODUCTION

The increasing demand for reliable small area statistics has led to the development of a number
of efficient model-based small area estimation (SAE) methods (Rao, 2003; Jiang & Lahiri, 2006).
For example, the empirical best linear unbiased predictor (EBLUP) based on a linear mixed
model (LMM) is often recommended when the target of inference is the small area average of a
continuous response variable (Battese et al., 1988; Prasad & Rao, 1990). However, using a mixed
model to characterise differences between small areas requires strong distributional assumptions,
a formal specification of the random part of the model and does not easily allow for outlier robust
inference. An alternative approach is to use M-quantile models (Breckling & Chambers, 1988)
to characterise these differences (Chambers & Tzavidis, 2006). Unlike traditional mixed models,
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M-quantile models do not depend on strong distributional assumptions and automatically provide
outlier robust inference.

Unfortunately, many survey variables are categorical in nature and are therefore not suited to
standard SAE methods based on LMMs. One option in such cases is to adopt a Hierarchical
Bayes approach (Malec et al., 1997; Nandram et al., 1999) or to use Empirical Bayes (MacGib-
bon & Tomberlin, 1989; Farrell et al., 1997). Alternatively, if a frequentist approach is preferred,
one can follow Jiang & Lahiri (2001) who propose an empirical best predictor (EBP) for a bi-
nary response, or Jiang (2003) who extends these results to generalised linear mixed models
(GLMMs). However, application of these models in SAE is not straightforward, as computing
the maximum likelihood estimates of the fixed and random effects parameters of a GLMM can
require evaluation of high dimensional integrals. Furthermore, the EBP is model dependent and
estimates of GLMM parameters can be very sensitive to outliers or departures from underly-
ing distributional assumptions. Large deviations from the expected response as well as outlying
points in the space of the explanatory variables are known to have a large influence on classi-
cal maximum likelihood inference based on generalised linear models (GLMs). This has lead to
the development of robust alternative methods for fitting these models (Pregibon, 1982; Preisser
& Qaqish, 1999; Cantoni & Ronchetti, 2001). But development of corresponding robust meth-
ods for GLMM-based SAE is limited. Maiti (2001) describes a Hierarchical Bayes approach to
fitting a GLMM based on an outlier-robust normal mixture prior for the random effects, while
Sinha (2004) proposes robust estimation of the fixed effects and the variance components of a
GLMM, using a Metropolis algorithm to approximate the posterior distribution of the random
effects. Similarly, Noh & Lee (2007) propose methods that allow robust inferences for GLMs,
with extension to GLMMs. However, only Maiti (2001) applies these methods to SAE.

To the best of our knowledge, there is no existing theory for robust SAE based on GLMMs in
the frequentist framework. In this paper we therefore propose a new approach to SAE for dis-
crete data based on M-quantile modelling. This allows straightforward extension of the existing
M-quantile approach for continuous data to the case where the response is binary or, more gen-
erally, a count. As with M-quantile modelling of a continuous response (Chambers & Tzavidis,
2006) random effects are avoided and between area variation in the response is characterised
by variation in area-specific values of quantile-like coefficients. Outlier-robust inference is also
automatic in case of both misclassification error and measurement error.

In the next Section we summarise estimation of a small area proportion based on a GLMM. In
Section 3 we then extend the M-quantile regression approach to binary data and, more generally,
to count data. In Section 4 we build on the extension to binary data to define the corresponding
M-quantile coefficients of the sample units. As with the continuous case, these coefficients cap-
ture small area effects in the data, leading to an M-quantile estimator of a small area proportion.
In the same Section, we also propose three estimators of the mean squared error (MSE) of this
estimator: an analytical estimator based on first order approximations to the variances of solu-
tions to estimating equations, and two bootstrap methods that extend ideas set out in Tzavidis
et al. (2010) and Chambers & Chandra (2012). In Section 5, we present results from model-based
and design-based simulation studies aimed at assessing the performance of the different small
area predictors considered in this paper. In Section 6 we use the M-quantile approach described
in this paper to estimate: (1) the number of unemployed people aged 16 and above resident in
each of 406 Unitary Authorities and Local Authority Districts (UALAD’s) of the UK; and (2)
the number of poor households in each of the 57 Local Labour Systems (LLS’s) of the Tuscany
region of Italy. Finally, in Section 7 we conclude the paper with a discussion of our results and
outstanding research issues.
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2. SMALL AREA ESTIMATION BASED ON GENERALISED LINEAR MIXED MODELS

Let U denote a finite population of size N which can be partitioned into D domains or small
areas, with Ud denoting small area d. The small area population sizes Nd; d = 1, ..., D are as-
sumed known. Let ydj be the value of the variable of interest (typically a discrete or a categorical
variable) for unit j in area d, and let xdj denote a p× 1 vector of unit level covariates (including
an intercept). It is assumed that the values of xdj are known for all units in the population, as are
the values zd of a q × 1 vector of area level covariates. The aim is to use the sample values of
ydj and the population values of xdj and zd to infer the values θd; d = 1, ..., D of a small area
characteristic of interest. To save notation, in what follows we use Es to denote the expectation
conditional on this information. It is well known that the minimum mean squared error predictor
of θd is then Es[θd].

In many cases θd = N−1
d

∑
j∈Ud f(ydj) where f is a known function. The minimum mean

squared error predictor of θd is thenN−1
d {

∑
j∈sd f(ydj) +

∑
j∈rd Es[f(ydj)]}, where sd denotes

the nd sampled units in small area d and rd denotes the Nd − nd remaining (i.e. non-sampled)
units in this area. In general, the conditional expectation Es[f(ydj)] can be difficult to evalu-
ate, and so is replaced by a suitable approximation. One such approximation is E[f(ydj)|ud]
where the ud; d = 1, ..., D are q-dimensional independent random effects characterising the
between-area differences in the distribution of ydj given xdj (see Rao, 2003; Jiang & Lahiri,
2006; González-Manteiga et al., 2007). This can be formalised by assuming a generalised linear
mixed model (GLMM) for µdj = E[ydj |ud] of the form

g(µdj) = ηdj = xTdjβ + zTd ud, (1)

where g is a known invertible link function. When ydj is binary-valued a popular choice for g
is the logistic link function and the individual ydj values in area d are taken to be independent
Bernoulli outcomes with

µdj = E[ydj |ud] = P (ydj = 1|ud) = exp{ηdj}(1 + exp{ηdj})−1 (2)

and V ar[ydj |ud] = µdj(1− µdj). The q-dimensional vector ud is generally assumed to be inde-
pendently distributed between areas and to follow a normal distribution with mean 0 and covari-
ance matrix Σu. The matrix Σu is allowed to depend on parameters δ = (δ1, . . . , δK), which are
then referred to as the variance components of the GLMM, while the vector β in (1) is referred
to as the fixed effects parameter of this model.

We focus on the situation where the target of inference is the small area d proportion,
ȳd = N−1

d

∑
j∈Ud ydj and the Bernoulli-Logistic GLMM (2) is assumed. In this case the approx-

imation to the minimum mean squared error predictor of ȳd is N−1
d [
∑

j∈sd ydj +
∑

j∈rd µdj ].
Since µdj depends on β and ud, a further stage of approximation is required, where unknown
parameters are replaced by suitable estimates. This leads to the plug-in version of the Empirical
Best Predictor (EBP) for the area d proportion ȳd under (2),

ˆ̄yEBPd = N−1
d

{∑
j∈sd

ydj +
∑
j∈rd

µ̂dj

}
, (3)

where µ̂dj = exp{η̂dj}(1 + exp{η̂dj})−1, η̂dj = xTdjβ̂ + zTd ûd, β̂ is the vector of the estimated
fixed effects and ûd denotes the vector of the estimated area-specific random effects. In the
simplest case, q = 1 and zd = 1, in which case the ud are scalar small area effects. We refer to (3)
in this case as a ‘random intercepts’ EBP. For more details on this predictor, including estimation
of its MSE, see Saei & Chambers (2003), Jiang & Lahiri (2006) and González-Manteiga et al.
(2007).
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Unfortunately, despite their attractive properties as far as modelling non-normal response vari-
ables are concerned, application of GLMMs in small area estimation is not always straightfor-
ward. In particular, the likelihood function defined by a GLMM can involve high-dimensional
integrals which cannot be evaluated analytically (see Mc Culloch, 1994, 1997; Song et al., 2005).
In such cases numerical approximations can be used, as for example in the R function glmer in
the package lme4. Alternatively, estimation of the model parameters in (2) can be carried out
using an iterative procedure that combines Maximum Penalized Quasi-Likelihood (MPQL) esti-
mation of β and ud with REML estimation of δ. See Saei & Chambers (2003). In the empirical
results reported in Section 5, we used glmer for parameter estimation.

3. M-QUANTILE REGRESSION MODELS FOR BINARY DATA

In this Section we develop an extension of linear M-quantile regression to binary data. Since
M-quantile models do not depend on how areas are specified, we also drop the subscript d in this
Section. We start by summarising M-quantile regression for a continuous response.

3·1. M-quantile regression for a continuous response
M-quantile regression (Breckling & Chambers, 1988) is a ‘quantile-like’ generalisation of re-

gression based on influence functions (M-regression). The M-quantile of order q of a continuous
random variable Y with distribution function F (Y ) is the value Qq that satisfies∫

ψq

(Y −Qq
σq

)
dF (Y ) = 0, (4)

where ψq(t) = 2ψ(t){qI(t > 0) + (1− q)I(t 6 0)} and ψ is a user-defined influence function.
Here σq is a suitable measure of the scale of the random variable Y −Qq. Note that when ψ(t) =
t we obtain the expectile of order q, which represents a quantile-like generalisation of the mean
(Newey & Powell, 1987), and when ψ(t) = sgn(t) we obtain the standard quantile of order q
(Koenker & Bassett, 1978).

Breckling & Chambers (1988) define a linear M-quantile regression model as one where the
ψ-based M-quantile Qq(X;ψ) of order q of the conditional distribution of y given the vector of
p auxiliary variables X satisfies

Qq(X;ψ) = Xβq. (5)

Let (yj ,xj ; j = 1, . . . , n) denote the available data. For specified q and continuousψ, an estimate
β̂q of βq is obtained by solving the estimating equation

n−1
n∑
i=1

ψq(rjq)xj = 0, (6)

where rjq = yj −Qq(xj ;ψ), ψq(rjq) = 2ψ(σ̂−1
q rjq){qI(rjq > 0) + (1− q)I(rjq 6 0)} and σ̂q

is a suitable robust estimator of scale, i.e. σ̂q = median|rjq|/0.6745. In this paper we will always
use the Huber Proposal 2 influence function ψ(t) = tI(−c < t < c) + c · sgn(t)I(|t| > c). Pro-
vided the tuning constant c is bounded away from zero, we can solve (6) using standard iteratively
re-weighted least squares (IRLS).

3·2. M-quantile regression for a binary response: an estimating equation approach
There is no obvious definition of a quantile regression function when Y is binary since the

order q quantile of a binary variable is not unique. However, provided the underlying influence
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function ψ is continuous and monotone non-decreasing, the M-quantiles of a binary variable do
exist and are unique. This is easily seen by considering the solution to (4) when Y is binary, with
P (Y = 1) = p. In this case (4) becomes

pqψ

(
1−Qq
σq

)
= (1− p) (1− q)ψ

(
Qq
σq

)
.

It is easy to see that when ψ(t) = t and q = 0.5, the solution to this estimating equation is
Q0.5 = p, as should be the case. Furthermore, when both p and q lie strictly between 0 and 1, the
preceding assumptions about ψ ensure thatQq also lies strictly between 0 and 1 and is monotone
non-decreasing in q for fixed p. It is also monotone non-decreasing in p for fixed q under the
assumption of a fixed scale parameter. A proof of this is available from the authors on request.

In the same way that we impose a linear specification (5) on Qq(X;ψ) in the continuous case,
we can impose an appropriate continuous (in q) specification on Qq(X;ψ) in the binary case. In
particular, it seems sensible to replace (5) by the linear logistic specification

Qq(xj ;ψ) =
exp(xTj βq)

1 + exp(xTj βq)
. (7)

In order to estimate the parameter βq we consider the extension to the M-quantile case of the
Cantoni & Ronchetti (2001) approach to robust estimation of the parameters of a GLM. In partic-
ular these authors propose a robustified version of the maximum likelihood estimating equations
for a GLM of the form:

Ψ(β) := n−1
n∑
j=1

{
ψ(rj)w(xj)

1

σ(µj)
µ′j − a(β)

}
= 0, (8)

where rj =
yj−µj
σ(µj)

are the Pearson residuals, E[Yj ] = µj , V ar[Yj ] = σ2(µj), µ′i is the derivative

of µj with respect to β and a(β) = 1
n

∑n
j=1E[ψ(rj)]w(xj)

1
σ(µj)

µ′j ensures the Fisher consis-
tency of the solution to (8). The bounded influence function ψ is used to control outliers in y,
whereas the weightsw are used to downweight the leverage points. Whenw(xj) = 1 ∀ j Cantoni
& Ronchetti (2001) refer to the solution to (8) as the Huber quasi-likelihood estimator. When ψ
is the identity function, (8) reduces to the usual maximum likelihood estimating equations for a
GLM.

Under the M-quantile framework the estimating equations (8) can be re-written as

Ψ(βq) := n−1
n∑
j=1

{
ψq(rjq)w(xj)

1

σ(Qq(xj ;ψ))
Q′q(xj ;ψ)− a(βq)

}
= 0, (9)

where rjq =
yj−Qq(xj ;ψ)
σ(Qq(xj ;ψ)) , σ(Qq(xj ;ψ)) = [Qq(xj ;ψ)(1−Qq(xj ;ψ))]1/2, Q′q(xj ;ψ) =

σ2(Qq(xj ;ψ))xj and a(βq) is a bias correction term:

a(βq) =
{
ψq

(1−Qq(xj ;ψ)

σ(Qq(xj ;ψ))

)
Qq(xj ;ψ)− ψq

( Qq(xj ;ψ)

σ(Qq(xj ;ψ))

)
(1−Qq(xj ;ψ))

}
.

Setting w(xj) = 1 ∀ j leads to a Huber quasi-likelihood M-quantile estimator. An alterna-
tive choice is w(xj) =

√
1− hj where hj is the jth diagonal element of the hat matrix

H = X(XTX)−1XT . This leads to a Mallows type M-quantile estimator. In either case, the
estimating equations (9) can be solved numerically using a Fisher scoring procedure to obtain an
estimate β̂q of βq.
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Note that when q = 0.5, (9) reduces to (8). Moreover, (6) is a special case of (9) if the the
linear link function Qq(xj ;ψ) = xTj βq is used and the tuning constant c in the Huber influence
function tends to infinity (i.e. ψ is the identity function).

This estimating equation approach applies quite generally. For example, it can be used when
Y is a Poisson random variable. In this case the most appealing specification for the M-quantiles
of the conditional distribution of Y is log-linear. That is,

Qq(xj ;ψ) = k exp(xjβq), (10)

where k is an offset term. The parameter βq can then be estimated by solving (9) with
σ(Qq(xj ;ψ)) = Qq(xj ;ψ)1/2, Q′q(xj ;ψ) = Qq(xj ;ψ)xj and

a(βq) = 2wq(rjq)
{
cP (Yj > i2 + 1)− cP (Yj 6 i1) +

Qq(xj ;ψ)

σ(Qq(xj ;ψ))
[P (Yj = i1)− P (Yj = i2)]

}
,

with i1 = bQq(xj ;ψ)− cσ(Qq(xj ;ψ))c, i2 = bQq(xj ;ψ) + cσ(Qq(xj ;ψ))c and wq(rjq) =
[qI(rjq > 0) + (1− q)I(rjq 6 0)].

Assuming that ψ is a continuous monotone non-decreasing function, we can write down a first
order sandwich-type approximation to the variance of (9) of the form

V ar(β̂q) = n−1
{
E
[∂Ψ(βq)

∂βq

]}−1
V ar{Ψ(βq)}

[{
E
[∂Ψ(βq)

∂βq

]}−1]T
. (11)

Here

V ar{Ψ(βq)} = n−1
n∑
j=1

{
xjσ

2(Qq(xj ;ψ))E
[
ψ2
q

{yj −Qq(xj ;ψ)

σ(Qq(xj ;ψ))

}]
xTj

}
−

n∑
j=1

a2
j (βq),

where

E
[
ψ2
q

{yj −Qq(xj ;ψ)

σ(Qq(xj ;ψ))

}]
=
{
ψ2
q

(1−Qq(xj ;ψ)

σ(Qq(xj ;ψ))

)
Qq(xj ;ψ) + ψ2

q

( −Qq(xj ;ψ)

σ(Qq(xj ;ψ))

)
(1−Qq(xj ;ψ))

}
,

a2
j (βq) is the square of the bias correction term for unit j, and the expectation E

[
∂Ψ(βq)
∂βq

]
is

B(βq) = −n−1
n∑
j=1

σ(Qq(xj ;ψ))
{{

ψq

(1−Qq(xj ;ψ)

σ(Qq(xj ;ψ))

)
+ ψq

( Qq(xj ;ψ)

σ(Qq(xj ;ψ))

)}
σ2(Qq(xj ;ψ))xjx

T
j

}
.

An estimator of (11) is then defined by plugging in estimates of unknown quantities into these
expressions. Denoting these plug-in estimates by a hat leads to a variance estimator for β̂q of the
form

V̂ ar(β̂q) = n−1B̂−1(β̂q)V̂ ar{Ψ(β̂q)}[B̂−1(β̂q)]
T . (12)

R routines for estimation and inference using M-quantile regression models with binary and
Poisson data are available from the authors.

3·3. M-quantile regression for a binary response: an econometric approach
The estimating equation approach described in the previous subsection does not strictly ap-

ply to standard quantile regression for binary data, and quantile regression for binary data
has been developed in the econometric literature using a latent variable concept. However,
as we now show, the two approaches are very closely related, since the econometric ap-
proach can be shown to be equivalent to the solution of an estimating equation analogous
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to (6). Since we confine ourselves to standard quantiles in this subsection, we drop the in-
fluence function ψ from our notation and, following Kordas (2006), we assume that the ob-
served values yj represent the outcome of a continuously distributed latent variable. That is,
the observed value yj is generated by an unobserved (latent) real value y∗j in the sense that
yj = I(y∗j > 0). LetQ∗q(xj) denote the conditional quantile function of this latent variable. Since
yj = I(y∗j > 0) is a monotonic transformation of y∗j , the qth conditional quantile of yj should be
the same transformation of the qth conditional quantile of y∗j . That is

Qq(xj) = I(Q∗q(xj) > 0).

Given that Q∗q(X) = Xβq, it follows that Qq(xj) = I(xTj βq > 0) and a ‘maximum score’ esti-
mator for βq , defined by

β̂q = max
‖b=1‖

n−1
n∑
j=1

{yj − (1− q)}I(xTj b > 0) (13)

was suggested by Manski (1975, 1985). Put Ij(b) = I{yj < I(xTj b > 0)}. Since I{yj <
Ij(b)} = (1− yj)Ij(b), we can, after some simplification, show that (13) reduces to

β̂q = min
‖b=1‖

n−1
n∑
j=1

[
qI{yj > Ij(b)}+ (1− q)I{yj < Ij(b)}

]
|yj − Ij(b)|. (14)

This is equivalent to fitting the quantile regression model Qq(xj) = I(xTj βq) to the observed
yj , subject to the restriction ‖βq = 1‖, or, in what amounts to the same thing, solving (6) with
ψ(t) = sgn(t), subject to this restriction. Note that the restriction is necessary in order to ensure
that βq is identifiable (since the scale of y∗j is unknown) and so (13) has a solution.

A smoothed version of (13) has been proposed by Horowitz (1992) as having better finite
sample properties:

β̂q = max
‖b=1‖

n−1
n∑
j=1

{yj − (1− q)}F (σ−1
n xTj b), (15)

where F is an appropriately chosen ‘smooth’ cumulative distribution function defined on the
entire real line and σn → 0 as n→∞. The same simplifying steps as those leading to (14)
allow us to write (15) as

β̂q = min
‖b=1‖

n−1
n∑
j=1

[
qI{yj > F (σ−1

n xTj b)}+ (1− q)I{yj < F (σ−1
n xTj b)}

]
|yj − F (σ−1

n xTj b)|,

since 0 < F (t) < 1⇒ I{yj < F (σ−1
n xTj b)} = 1− yj . That is, this ‘smoothed’ loss function

for regression quantiles for binary data leads to essentially the same estimator as the logistic

formulation (7). In fact, if we put F (t) = exp{σ−1
n xTj b}

(
1 + exp{σ−1

n xTj b}
)−1

then as σn →

0, F (σ−1
n xTj b)→ exp{xTj b}

(
1 + exp{xTj b}

)−1
, and we end up with the quantile analogue of

the solution to (6), with Qq(xj ;ψ) defined by (7) and subject to the restriction ‖βq = 1‖.
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4. ESTIMATION OF SMALL AREA PROPORTIONS USING M-QUANTILE REGRESSION
MODELS

Much of the data measured in business, labour force and living conditions surveys is binary in
character, and there is a growing need for reliable small area estimates based on these data. From
now on therefore we focus on using M-quantile regression models for binary data to estimate the
small area averages (i.e. the small area proportions) defined by a binary outcome variable.

4·1. Point estimation
The mixed models employed in small area estimation use random area effects to account for

between-area variation. These models depend on distributional assumptions for the random part
of the model and do not easily allow for outlier robust inference. An alternative approach to
modelling the variability associated with the conditional distribution of Y given X is via M-
quantile regression models. These models do not depend on strong distributional assumptions or
on a predefined small area ‘geography’, and outlier robust inference is automatic.

A key concept when using an M-quantile regression model for small area estimation is that of
the ‘M-quantile coefficient’ qj for a unit j ∈ s. When the variable Y is continuous this is the value
qj such that yj = Qqj (xj ;ψ). Note that M-quantile coefficients are determined at population
level. If between area variation is an important part of overall population variability then units
within an area will have similar M-quantile coefficients. Provided there are sample observations
in area d, estimated values of their M-quantile coefficients are defined by substituting Q̂qj (xj ;ψ)

in the preceding definition. An area d specific M-quantile coefficient, θ̂d can then be defined as
the average value of the estimated M-quantile coefficients in area d, otherwise we set θ̂d = 0.5.
Following Chambers & Tzavidis (2006), the M-quantile predictor of the average ȳd in small area
d is

ˆ̄yMQ
d = N−1

d

{∑
j∈sd

ydj +
∑
j∈rd

Q̂θ̂d(xdj ;ψ)
}
. (16)

When Y is binary, and we model its regression M-quantile of order q via (7), the natural extension

of this approach is to put Q̂θ̂d(xdj ;ψ) = exp{xTdjβ̂θ̂d}
(

1 + exp{xTdjβ̂θ̂d}
)−1

in (16). However,

this begs the question of how one defines θ̂d, since the estimating equation yj = Q̂qj (xj ;ψ)
for the estimated M-quantile coefficient of a continuous yj no longer has a solution when yj is
binary. We therefore discuss extension of the M-quantile coefficient concept to binary Y before
we consider inference based on (16).

4·2. M-quantile coefficients for binary data
A first step in defining M-quantile coefficients for binary data is to note that any reasonable

definition of this concept has to associate a larger M-quantile coefficient with a value yj = 1
compared with a value yj = 0 at the same value of xj . The next thing to note is that the solution
mj to the equation Q̂mj (xj ;ψ) = 0.5 can be interpreted as a measure of the propensity for yj =
1 to be observed relative to the propensity for yj = 0 to be observed at xj . A value mj < 0.5
indicates that yj = 1 is more likely than yj = 0 and vice versa. This leads to our first definition
of an estimated M-quantile coefficient when Y is binary.

DEFINITION A: Given binary data with fitted M-quantile regression function Q̂q(xj ;ψ), the
estimated M-quantile coefficient for observation j is qj = (mj + yj)/2, where Q̂mj (xj ;ψ) =
0.5.

Note that provided Q̂q(xj ;ψ) is monotone in q at xj , the above definition of an estimated M-
quantile coefficient should be unique. In order to understand the motivation for this definition,
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suppose that yj = 0 at xj and that there are many more Y = 0 than Y = 1 ‘near’ xj . Then
(a) yj = 0 is not unusual, and (b) we anticipate that the monotone increasing function f(q) =

Q̂q(xj ;ψ) will only exceed half for values of q close to one. That is, mj will be close to one and
so qj will be slightly less than half. On the other hand, suppose yj = 1 but there are still many
more Y = 0 than Y = 1 ‘near’ xj . Then (a) yj = 1 is unusual, and (b) we still anticipate that
the monotone increasing function f(q) = Q̂q(xj ;ψ) will only exceed half for values of q close
to one. Here qj will be close to one. Conversely, suppose that there are many more observations
with Y = 1 than with Y = 0 ‘near’ xj , so mj is close to zero. Then if yj = 0 (an unusual value)
we expect qj will also be close to zero, while if yj = 1 (not unusual) we expect qj will be slightly
greater than a half.

The estimated M-quantile coefficients allow us to ‘index’ the sample data. A somewhat dif-
ferent indexing based on quantile regression modelling of Y is described in Kordas (2006). This
takes a latent variable approach and the resulting index is essentially defined by a quantile-
based estimate of P (yj = 1|xj). Under linearity of the conditional quantiles of this latent vari-
able, we have already seen that Qq(xj) = I(xTj βq > 0) and so P (yj = 1|xj) = 1− hj , where
xTj βhj = 0. Consequently, given an estimate β̂q for each value 0 < q < 1 we can index the sam-
ple observations by pj = 1− hj where xTj β̂hj = 0. Note that this index does not depend on yj ,
and so cannot reflect individual effects, which would seem to limit its usefulness in character-
ising how groups differ after covariate effects have been taken into account. However, we can
use the approach leading to Definition A to extend this index by allowing it to reflect individual
effects.This leads to our second definition of an estimated M-quantile coefficient for the binary
case.

DEFINITION B: Given binary data with fitted M-quantile regression function Q̂q(xj ;ψ), the
estimated M-quantile coefficient for observation j is qj = (hj + yj)/2, where xTj β̂hj = 0.

Note that if xTj β̂q = 0⇔ Q̂q(xj ;ψ) = 0.5 then Definition B and Definition A are identical.
This condition will hold, for example, whenever ψ is the identity function and Qq(xj ;ψ) =
Qq(xj) = F (xTj βq) where F (t) is a distribution function that satisfies F (0) = 0.5.

Unfortunately, both Definition A and Definition B have a serious deficiency. This follows
from the fact that in applications where hj varies around some constant, say h, qj will be ‘con-
centrated’ near (1 + h)/2 and h/2. Furthermore, it is impossible to observe qj = 0.5 in general.
An extreme case is where there is no relationship between yj and xj , and yj = 1 is just as likely
as yj = 0. In this case hj = 0.5, and there are just two possible values of qj , 0.75 (yj = 1) and
0.25 (yj = 0).

The basic reason for this behaviour is that both Definition A and Definition B compute qj on
the same scale as yj . This makes sense when the distribution of yj is measured on a linear scale.
However, in the binary case the distribution of yj is linear in the logistic scale, and so it makes
sense to define qj in the same way. That is, we replace qj and hj in Definition B by Q̂qj (xj ;ψ)

and Q̂0.5(xj ;ψ) respectively, leading to our third, and final, definition of qj :
DEFINITION C: Given binary data with fitted M-quantile regression function Q̂q(xj ;ψ), the

estimated M-quantile coefficient for observation j is qj , where Q̂qj (xj ;ψ) = (Q̂0.5(xj ;ψ) +
yj)/2.

Note that under a logistic specification for Q̂q(xj ;ψ), using Definition C is equivalent to
defining qj as the solution to y∗j = xTj βqj , where

y∗j = log
( 0.5{Q̂0.5(xj ;ψ) + yj}

1− 0.5{Q̂0.5(xj ;ψ) + yj}

)
.
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Fig. 1. Estimated area effects vs. true area effects (left plot)
and estimated M-quantile coefficients vs. true area effects
(right plot) in a Monte-Carlo simulation with D = 200 and

nd = 25.

The value y∗j above can be thought of as a pseudo-value that behaves ‘like’ the unobservable
latent variable whose distribution determines that of yj . In the rest of this paper, and particu-
larly in the simulation experiments reported in Section 5, we use Definition C when calculating
estimated M-quantile coefficients.

Efficient estimates of area effects are necessary for small area estimation via GLMMs. Simi-
larly, estimation of M-quantile coefficients is necessary for small area estimation using the binary
M-quantile model proposed in this paper. A natural question is then the strength of the relation-
ship between the actual area effects and the estimated M-quantile coefficients. Some empirical
evidence for such a relationship is displayed in Figure 1. These scatterplots show how area effects
estimated using the glmer function in R and M-quantile coefficients estimated via Definition
C are related to true area effects. The simulated data underpinning these plots were generated
using D = 200 areas, each with a sample size of nd = 25. At each simulation, values of xdj
were independently drawn as Normal(0, 1) and corresponding values of ydj were then gener-
ated as Bernoulli(pdj) with pdj = exp{ηdj}(1 + exp{ηdj})−1 and ηdj = xdj + ud. The small
area effects ud were independently drawn as Normal(0, 1). Figure 1 shows how the estimated
area effects and the estimated M-quantile coefficients are related to the true area effects in one
Monte-Carlo simulation. Over 1, 000 simulations, the average correlation between the true area
effects and estimated area effects was 0.89, and the corresponding average correlation between
the true area effects and the estimated M-quantile coefficients was 0.80. These results suggest
that M-quantile coefficients are comparable to estimated area effects obtained using standard
GLMM fitting procedures as far as capturing intra-area (domain) variability is concerned. Note
also that these simulations build on data generated via a GLMM. In real applications, where
GLMM assumptions may be violated, we expect that an M-quantile approach should offer a
robust alternative for small area estimation.
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4·3. Mean squared error estimation
To start, we propose a MSE estimator for (16) based on the linearisation approach set out

in Chambers et al. (2009). This assumes that the working model for inference conditions on
the realised values of the area effects, and so the MSE of interest is conditional and equal to a
conditional prediction variance plus a squared conditional prediction bias. In order to conserve
space, we omit some technical details in the following development, but these are available from
the authors upon request. We also assume that the estimated area-level M-quantile coefficient
values θd have negligible variability and so can be treated as fixed. A first order approximation
to the conditional prediction variance of (16) is then

V ar(ˆ̄yMQ
d − ȳd|θd) = N−2

d

{
V ar

[∑
j∈rd

Q̂θd(xj ;ψ)
]

+
∑
j∈rd

V ar(yj)
}

≈ N−2
d

{[∑
j∈rd

Qθd(xj ;ψ)xTj

]
V ar(β̂θd)

[∑
j∈rd

Qθd(xj ;ψ)xTj

]T
+
∑
j∈rd

V ar(yj)
}
,

which can be estimated by

V̂ ar(ˆ̄yMQ
d ) = N−2

d

{[∑
j∈rd

Q̂θ̂d(xj ;ψ)xTj

]
V̂ ar(β̂θ̂d)

[∑
j∈rd

Q̂θ̂d(xj ;ψ)xTj

]T
+
∑
j∈rd

V̂ ar(yj)
}
.

Here V̂ ar(β̂θ̂d) is the sandwich-type estimator (12) and V̂ ar(yj) can be calculated either by (i)

using the sample data from area d, V̂ ar(yj) = ˆ̄yd(1− ˆ̄yd) or by (ii) pooling data from the entire
sample, in which case V̂ ar(yj) = ˆ̄y(1− ˆ̄y). Note that the pooled estimator should lead to more
stable prediction variance estimates when area sample sizes are very small.

The conditional prediction bias can be approximated using the results of Copas (1988):

E(ˆ̄yMQ
d − ȳd|θd) ≈ −

1

2N

{ ∂

∂βθd
Ψ(βθd)

}−1{
tr
[{ ∂

∂βθd∂β
T
θd

Ψ(βθd)
}
V ar(β̂θd)

]}
{ ∂

∂βθd

∑
j∈rd

Qθd(xj ;ψ)
}
,

with corresponding plug-in estimator

B̂ias(ˆ̄yMQ
d ) = − 1

2N

{ ∂

∂βθd
Ψ(βθd)|βθd=β̂θ̂d

}−1{
tr
[{ ∂

∂βθd∂β
T
θd

Ψ(βθd)|βθd=β̂θ̂d

}
V̂ ar(β̂θ̂d)

]}
{ ∂

∂βθd

∑
j∈rd

Qθd(xj ;ψ)|βθd=β̂θ̂d

}
.

The estimator of the conditional MSE of ˆ̄yMQ
d is then

mseA(ˆ̄yMQ
d ) = V̂ ar(ˆ̄yMQ

d ) + {B̂ias(ˆ̄yMQ
d )}2. (17)

We also propose two different bootstrap-based methods for estimating the MSE of (16) - a
nonparametric bootstrap and a random effect block bootstrap. In order to save space, the compu-
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tational details of each bootstrap procedure are set out in the Appendix. Here we summarise the
main characteristics of each method.

The nonparametric bootstrap-based estimator (hereafter NPB) of the MSE of ˆ̄yMQ
d is defined

by using the GLMM representation (2) to generate bootstrap populations of binary values that
mimic the real population, sampling from this bootstrap population and calculating (16). This
procedure is an extension to binary data of the method proposed by Tzavidis et al. (2010). The
bootstrap procedure is nonparametric in the sense that it replicates area effects in the population
by expressing the linear component of the logistic M-quantile regression model (7) as

γjq = xTj β0.5 + x̄Td (βθd − β0.5), (18)

where x̄Td is the vector of area d averages of the model covariates. The last term on the right-hand
side of (18) is then interpreted as a pseudo-random effect for area d.

The random effect block bootstrap, see Chambers & Chandra (2012), is a robust alterna-
tive to parametric bootstrap methods for clustered data. It is free of both the distribution and
the dependence assumptions of the usual parametric bootstrap for such data and is consistent
when the mixed model assumption is valid. In particular, it preserves area effects by boot-
strap resampling within areas. We adapt this procedure (hereafter REBB) for estimating the
distribution of the M-quantile predictor (16) by resampling the marginal logistic scale residu-
als rMQ

dj = xTdj(β̂θ̂d − β̂0.5) within each area to generate bootstrap values of P (yj = 1|xj) for
the population units making up the area. Bootstrap binary population values are then obtained
using Bernoulli simulation.

5. SIMULATION STUDIES

We present results from two types of simulation studies that are used to examine the perfor-
mance of the small area estimators discussed in the preceding Sections. In Subsection 5·1 below
we report results from model-based simulations where population data are first generated us-
ing a GLMM and a sample is then drawn from this simulated population using a pre-specified
design. The properties of estimators of small area proportions are assessed by comparing the
estimates that they generate based on the sample data to the corresponding population propor-
tions. In Subsection 5·2 we report results from a design-based simulation. Here a realistic finite
population is simulated by resampling from data collected in a sample survey, and then repeated
samples are drawn from it using the same (or similar) sample design as the original survey. In
this case the survey data were sourced from the European Union Statistics on Income and Living
Conditions (EU-SILC) 2005 survey, and the distribution of estimates of small area proportions
generated under repeated sampling is used to compare the properties of different estimators of
these proportions.

Two different M-quantile versions of (16) were investigated in the simulations, both based on
a linear logistic M-quantile model defined by a Huber influence function with tuning constant c.
In the first, referred to as M-quantile below, c = 1.345, while the second, referred to as Expectile
below, c = 100. These estimators were compared with the EBP (3) under a GLMM with logistic
link function and with the direct estimator (the sample proportion). Both MSE estimation and
confidence interval coverage performance were evaluated using the analytic and two bootstrap
methods described in Subsection 4·3 for the M-quantile predictor.

Note that the logistic M-quantile linear regression fit underpinning the M-quantile and Expec-
tile predictors was obtained using an extended version of a M-quantile linear regression model
function for SAE written in R. The parameters of the GLMM used in the EBP were estimated
using the function glmer in R.
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5·1. Model-based simulations
In each simulation we generated N = 5, 000 population values of X and Y in D = 50 small

areas with Nd = 100, d = 1, . . . , D. Individual xdj values were drawn independently at each
simulation as Uniform(ad, bd), for ad = −1 and bd = d/4, d = 1, . . . , D, j = 1, . . . , Nd. Val-
ues of ydj were then generated as Bernoulli(pdj) with pdj = exp{ηdj}(1 + exp{ηdj})−1 and
ηdj = xdjβ + ud. The small area effects ud were independently drawn from a normal distribu-
tion with mean 0 and variance ϕ = 0.25, and β = 1 (González-Manteiga et al., 2007). Population
values generated under this scenario are denoted by (0) below. In addition, we generated data cor-
responding to a combined misclassification error and measurement error scenario, denoted (M)
below. In this scenario, a random 1% sample of the xdj values were replaced by 20 (introducing
measurement error) and the corresponding ydj values were set to 0 (introducing misclassification
error).

For each of these scenarios T = 1, 000 Monte-Carlo populations were generated. For each
generated population and for each area d we then took simple random samples without re-
placement of sizes nd = 10 and nd = 20 so that the overall sample sizes were n = 500 and
n = 1, 000. For each sample the M-quantile and Expectile predictors, the EBP and the direct
estimator were used to estimate the small area proportions ȳd, d = 1, . . . , D.

The performances of different small area estimators for area d were evaluated with respect
to two criteria: their average error T−1

∑T
t=1(ˆ̄ydt − ȳdt) and the square root of their average

squared error T−1
∑T

t=1(ˆ̄ydt − ȳdt)2. These are denoted Bias and RMSE respectively below.
Here ȳdt denotes the actual area d value at simulation t, with predicted value ˆ̄ydt. The median
values of Bias and RMSE over the D small areas are set out in Table 1, where we see that
claims in the literature (Chambers & Tzavidis, 2006) about the superior outlier robustness of
the M-quantile predictor compared with the EBP and the Expectile predictor certainly hold true
in these simulations. In particular, under the (0) scenario the EBP performs better than the M-
quantile and Expectile predictors in terms of Bias, whereas the M-quantile predictor is the best
under the (M) scenario. In terms of RMSE, there is nothing to choose between EBP, M-quantile
and Expectile under the (0) scenario, while under the (M) scenario the M-quantile predictor is
clearly superior.

Table 1. Model-based simulation results: Predictors of small area proportions.
nd = 10 nd = 20

Predictor/Scenario (0) (M) (0) (M)
Median values of Bias

EBP 0.0013 -0.0200 0.0008 -0.0116
M-quantile 0.0041 0.0046 0.0041 0.0045
Expectile 0.0043 -0.0178 0.0045 -0.0164
Direct 0.0004 -0.0001 0.0001 -0.0001

Median values of RMSE
EBP 0.0519 0.0598 0.0442 0.0507
M-quantile 0.0509 0.0511 0.0444 0.0445
Expectile 0.0506 0.0625 0.0442 0.0508
Direct 0.1146 0.1148 0.0770 0.0777

In order to evaluate the performances of the MSE estimators proposed in Subsection 4·3
we used the data generated for the scenario with D = 50 and nd = 10 and also carried out a
further model-based simulation study with the same sample sizes within the small areas but
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withD = 100 andNd = 100. Again, T = 1, 000 Monte-Carlo populations were generated, with
individual xdj values drawn independently as Uniform(ad, bd), with ad = −1 and bd = d/8,
d = 1, . . . , D, j = 1, . . . , Nd. For each generated population a simple random sample without
replacement of size nd = 10 was drawn from each area d, the M-quantile predictor calculated
as well as its linearisation MSE estimator (17) and the two bootstrap MSE estimators NPB and
REBB, both based on 100 bootstrap iterations. The behaviour of these MSE estimators for each
scenario is displayed in Table 2 where we show the medians of their area specific Bias and RMSE
values, expressed in relative terms (%). We also show the median empirical coverage rates for
nominal 95 per cent confidence intervals based on these methods. In the case of (17) these inter-
vals were defined by the small area estimate plus or minus twice the value of the square root of
(17). For NPB and REBB these intervals were based on the 2.5 and the 97.5 percentiles of the
relevant bootstrap distribution.

Examination of Table 2 shows that all three MSE estimation methods tend to be biased low,
but all generate nominal 95 per cent confidence intervals with acceptable coverage. Overall, the
REBB bootstrap estimator seems preferable because it shows smaller or similar bias and more
stability than both the linearisation-based estimator (17) and the NPB bootstrap estimator.

Table 2. Model-based simulation results: MSE estimators.
Median values Median values Median values

of Relative Bias (%) Relative RMSE (%) of Coverage Rate (%)
D = 50

Estimator/Scenario (0) (M) (0) (M) (0) (M)
mseA(ˆ̄yMQ

d ) -5.37 -6.05 24.33 25.30 95 94
mseNPB(ˆ̄yMQ

d ) -12.06 -11.91 15.64 16.40 92 92
mseREBB(ˆ̄yMQ

d ) -7.57 -1.03 12.70 13.00 93 95
D = 100

mseA(ˆ̄yMQ
d ) -5.80 -6.91 25.15 24.51 95 94

mseNPB(ˆ̄yMQ
d ) -11.42 -11.28 15.10 14.72 92 93

mseREBB(ˆ̄yMQ
d ) -6.56 -0.86 12.02 11.49 94 95

5·2. Design-based simulation
The population underpinning the design-based simulation is based on data collected from a

sample of 1, 560 households spread across 64 municipalities (out of 287) in Tuscany They were
collected by ISTAT as part of the European Union Statistics on Income and Living Conditions
(EU-SILC) 2005 survey. These survey data provide information on a variety of issues related to
living conditions of the people in Tuscany, including details on income and non-income dimen-
sions of poverty in the region, and form the basis of poverty assessment in this region. Here we
define the sampled municipalities as our small areas of interest. Since nine municipalities had
sample sizes less than three, these were combined with adjacent municipalities, leading to a total
of 55 small areas.

We used these sample households to generate a population of N = 74, 951 households by
sampling with replacement from the original sample of 1, 560 households with probabilities
proportional to their sample weights. Given this (fixed) population, we then independently drew
1, 000 stratified random samples from it, with the 55 (redefined) municipalities serving as strata,
and with the sample size for each municipality fixed to be the same as in the original sample.
Note that these sample sizes varied from 4 to 116. The binary variable of interest Y was defined
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Fig. 2. Model fit diagnostics for a logistic mixed model fit
to the EU-SILC data: This shows the distribution of Pear-
son residuals by municipality (left) and a normal probabil-

ity plot of the estimated municipality effects (right).

as taking the value 1 if the equivalised income of a household was below the median income
for the simulated population and 0 otherwise. The aim was to compare the repeated sampling
performance of different predictors of the proportion of households below median equivalised
income at municipality level, using household ownership status (a strong indicator of poverty),
the age of the head of the household, the employment status of the head of the household, the
gender of the head of the household, the years of education of the head of the household and the
household size as covariates.

Figure 2 shows selected diagnostics for a logistic mixed model fit to Y based on the orig-
inal EU-SILC data and using these covariates. The distribution of Pearson residuals indicates
the presence of potential influential observations in the data, with a number of large residuals
(|rdj | > 2). Further evidence for the presence of these influential observations is obtained when
we fit the model using a robust method (Cantoni & Ronchetti, 2001) and note that although most
observations receive a weight of 1 in this fit, there are 19 (about 1% of the overall sample) that
receive a weight of less than 0.7. The normal probability plot shown in Figure 2 also indicates
that the Gaussian assumption for the distribution of the random effects in this GLMM is doubt-
ful. Using a model that relaxes this assumption, such as an M-quantile model with a bounded
influence function, therefore seems reasonable for these data.

Table 3 shows the five point summaries of the municipality level distributions of Bias and
RMSE generated under repeated sampling for the same four estimators that were the focus of the
model-based simulations reported in the previous Subsection. These show that the M-quantile
and Expectile predictors have similar performance and both generally perform better than the
EBP and the Direct estimator in terms of RMSE. In particular, if one focuses on median perfor-
mance, then the M-quantile predictor seems the best of the four.

Table 4 shows the median values of Bias and RMSE, expressed in relative terms, of the three
MSE estimators for the M-quantile predictor. In this case the NPB method performs best, with
the REBB and the linearisation-based estimator (17) displaying a somewhat larger positive Bias
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Table 3. Design-based simulation results: Distributions of Bias and RMSE for predictors of the
proportion of households with below median income.

Predictor Min Q1 Median Mean Q3 Max
Bias

EBP -0.4692 -0.0230 0.0026 -0.0051 0.0187 0.3587
M-quantile -0.1882 -0.0359 0.0007 -0.0007 0.0384 0.1991
Expectile -0.1851 -0.0317 0.0031 -0.0012 0.0364 0.2227
Direct -0.0049 -0.0010 0.0004 0.0003 0.0016 0.0068

RMSE
EBP 0.0401 0.0631 0.0703 0.0870 0.0806 0.4701
M-quantile 0.0264 0.0566 0.0647 0.0801 0.0965 0.2041
Expectile 0.0265 0.0555 0.0654 0.0807 0.0964 0.2316
Direct 0.0011 0.0816 0.0955 0.0911 0.1046 0.1507

and slightly more instability. Again, we see that median coverage performance of all three MSE
estimation methods appears acceptable.

Table 4. Design-based simulation results: Performances of MSE estimators.
Estimator Median Median Median

Relative Bias (%) Relative RMSE (%) Coverage Rate (%)
mseA(ˆ̄yMQ

d ) 11.03 30.32 93
mseNPB(ˆ̄yMQ

d ) 6.72 27.70 97
mseREBB(ˆ̄yMQ

d ) 11.28 28.46 97

6. APPLICATIONS

6·1. Estimates of ILO unemployment for UALADs of Great Britain
In this Subsection we apply the M-quantile modelling approach to estimating the number of

unemployed people aged 16 and over in each of 406 Unitary Authorities and Local Authority
Districts (UALADs) of Great Britain. We use the ILO unemployment definition and data from
a sample of about 169, 000 people aged 16 and over who participated in the UK Labour Force
Survey (LFS) carried out by the Office for National Statistics (ONS) in 2000, with M-quantile
model covariates specified by prior studies of small area estimation of UK labour force charac-
teristics (Molina et al., 2007). In particular, we use the following covariates: sex-age category of
an individual (6 categories corresponding to Male/Female and age groups 16− 25, 26− 40 and
> 40), government office region of the UALAD (12 categories), ONS socio-economic classifi-
cation of the UALAD (7 categories) and total of registered unemployed in the sex-age group for
the UALAD. In order to compare M-quantile estimates with EBP estimates, the same covariates
were also used to fit a logistic mixed model to the LFS data, and corresponding EBP-type es-
timates were computed. All estimates of proportions were scaled up to estimates of counts by
multiplying by population counts for each sex-age group in a UALAD and then summing over
these groups within a UALAD.

Figure 3 shows the normal probability plot of estimated UALAD random effects obtained
by fitting a logistic mixed model to the sample data. A Shapiro-Wilk normality test rejects the
null hypothesis of normality for these estimated random effects (p-value = 0.01371). Apply-
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ing a robust fitting method (Cantoni & Ronchetti, 2001) to this data set, we note that although
most observations receive a weight of 1, about 3.5% receive weights less than 0.7. Using a less
parametric model, e.g. an M-quantile model with a bounded influence function, therefore seems
reasonable for these data.
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Fig. 3. Normal probability plot of estimated UALAD ran-
dom effects for proportion of unemployed population aged
16 and over, based on a logistic mixed model fit to UK LFS

data.

In order to assess the resulting M-quantile estimates we note that model-based small area
estimates should be both consistent with corresponding unbiased direct estimates and more pre-
cise than them. Figure 4 plots the M-quantile estimates of total numbers of unemployed against
corresponding direct estimates for each UALAD. We can see that the M-quantile estimates ap-
pear to be generally consistent with the direct estimates, although the relationship between these
two sets of estimates diverges in the larger UALADs, where the M-quantile estimates tend to
be larger. This is consistent with the right skewed distribution of estimated area effects shown
in Figure 3. Overall, however, the correlation of 0.78 between the M-quantile estimates and the
direct estimates is reasonably high.

In order to assess the gain in precision from using model-based estimates instead of the direct
estimates, we can look at the distribution of the ratios of the estimated coefficients of variation
(CVs) of the direct and the model-based estimates. A value greater than 1 for this ratio indi-
cates that the estimated CV of the model-based estimate is less than that of the direct estimate.
Figure 5 shows the relationship between these ratios and the number of unemployed people in
the LFS sample in each UALAD. Two sets of ratios are plotted - those corresponding to EBP
estimates (red) and those corresponding to M-quantile estimates (blue). Note that the CV for the
M-quantile estimate is calculated as [mseREBB(ˆ̄yMQ

d )]1/2/ˆ̄yMQ
d , while that for the EBP esti-
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Fig. 4. Numbers of unemployed people aged 16 and over
in UALADs of Great Britain in 2000: Model-based M-
quantile estimates versus corresponding direct estimates.

mate is calculated as [mseEBP (ˆ̄yEBPd )]1/2/ˆ̄yEBPd , wheremseEBP (ˆ̄yEBPd ) is obtained using the
bootstrap procedure described in González-Manteiga et al. (2007).

It is clear from Figure 5 that the estimated CVs of the M-quantile and EBP estimates of unem-
ployment are generally much lower than those of the direct estimates. Furthermore, the estimated
CVs of the M-quantile estimates are generally lower than those of the EBP estimates. This may
be due to of the small number of sampled unemployed individuals within the UALADs and
consequent problems with estimation of the area random effects when fitting the logistic mixed
model using LFS data. Overall, our conclusion is that for these data, and for estimating UALAD
unemployment, the M-quantile approach seems superior to the EBP approach.

We also carried out a similar exercise where we used these UK LFS data to estimate the
total number of employed people in each UALAD. In this case the much larger samples of
employed people lead to the conclusion that there was no significant advantage in using model-
based methods (either EBP or M-quantile) compared with direct estimation. We do not provide
further details here, but they are available from the authors on request.

6·2. Estimates of number of households in poverty in Local Labour Systems of Tuscany
In this Subsection we describe a second application of the M-quantile modelling approach to

small area estimation. In this case we focus on estimating the number of poor households in each
of the 57 Local Labour Systems (LLS’s) of Tuscany, using the 2005 EU-SILC dataset described
in Section 5·2. Poverty maps based on such measures are important tools for providing infor-
mation on the spatial distribution of poverty, and are often used to assist the implementation of
poverty alleviation programs. In this application a household is defined to be poor if its equiv-
alised income falls below a minimum level (the poverty line) necessary to meet basic food and
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Fig. 5. Ratio of estimated coefficients of variation of direct
estimates to M-quantile (blue) and EBP (red) estimates of

total number of unemployed for each UALAD.

non-food needs. The poverty line is defined as 60% of median equivalised income. There are 57
LLSs in total in Tuscany, with 28 not represented in the EU-SILC dataset. Direct estimates of the
number of poor households within each LLS level have high variances, particularly for LLS’s
with small sample sizes. Moreover, direct estimates cannot be provided for areas with no sample.

Estimated numbers of poor households for each LLS were calculated using the M-quantile
predictor (16) with the logistic M-quantile specification (7) as well as the EBP predictor (3)
based on a logistic mixed model, with covariates defined by ownership status, age of the head
of the household, gender of the head of the household and their interactions. Population data
for these covariates were drawn from the Population Census 2001. An issue with this approach
is the potential lack of comparability between household-level variables measured in the 2001
Population Census and the same variables measured in the the 2005 EU-SILC. However, the
covariates used in this study are not expected to change significantly over a short period of time.

Figure 6 shows the normal probability plot of the estimated LLS random effects obtained
from the logistic mixed model fit to the EU-SILC data. It indicates that their distribution is left-
skewed and that the assumption of normality is probably incorrect. As already noted in 5·2, there
is evidence of outlying data values in this dataset. Consequently, we fit an M-quantile model
defined by a Huber Proposal 2 influence function (c = 1.345) to the EU-SILC data in order to
estimate LLS counts of number of poor households.

The correlation between the direct and M-quantile estimates for the sampled LLS’s is 0.97,
while the corresponding correlation for the EBP estimates is 0.95. As Figure 7 shows, the overall
consistency between the M-quantile estimates and the direct estimates is very good, although
this tends to become weaker for LLS’s with large estimated number of poor households.
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Fig. 6. Normal probability plot of estimated LLS-level
residuals from logistic mixed model fit to EU-SILC data
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Fig. 7. Model-based M-quantile estimates of numbers of
households in poverty in sampled LLS’s compared with

corresponding direct estimates.

The left plot in Figure 8 displays the values of the ratios of the estimated CVs for the direct and
model-based estimates of numbers of poor households and the right plot shows the distribution
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Fig. 8. Left plot shows ratio of estimated coefficients of
variation of direct estimates to M-quantile (blue) and EBP
(red) estimates of total number of poor households for each
LLS and right plot shows distribution of LLS values of
estimated CV for direct (solid line) and model-based es-
timates, with estimated CVs for the M-quantile predictor
shown as a dashed blue line and estimated CVs for the EBP

shown as a dashed red line.

across LLS’s of the estimated CVs (expressed in percentage terms) of these estimates. In both
plots blue indicates M-quantile estimates and red indicates EBP estimates. The solid black line
in the right plot refers to the direct estimates. The estimated gains of the model-based estimates
over the direct estimates is not as striking as in the previous application, but are still substantial,
particularly for LLS’s with a small number of sampled households. Generally, the M-quantile
estimates have a smaller estimated CV than corresponding EBP estimates, with the most striking
difference being for the non-sampled LLS’s (located to the right of the vertical dividing line),
where the M-quantile estimates are very stable and clearly dominate the EBP estimates.

7. FINAL REMARKS

Models for discrete data, and specifically for binary data, are important in small area estima-
tion. In this paper we extend the concept of M-quantile regression modelling to discrete data, and
show how these models can be used in small area estimation. By construction, this approach is
outlier robust, does not require strong assumptions about the distribution of the response and can
be applied independently of any pre-specified grouping of the data. In particular, the same fitted
M-quantile model can be used to provide estimates for more than one small area ‘geography’
defined on a target population.

In a number of model-based and design-based simulations, as well as in two realistic appli-
cations, we compare the performance of small area estimates of proportions based on a logistic
M-quantile specification with those defined by a plug-in approach to empirical best prediction
based on a logistic mixed model specification. Our results indicate that the M-quantile estimates
are either comparable or preferable. We also introduce three different approaches to estimating
the mean squared error of the M-quantile model-based estimator, one based on a linearisation
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argument and the other two based on bootstrap. All three MSE estimators provide acceptable
coverage performance in our simulations, with the second bootstrap method (REBB), based on
the application of a modified block bootstrap, being slightly preferable because of its stability
and simplicity.

An obvious extension of the development set out in this paper is to M-quantile versions of
GLMs for count data. Although we briefly describe the M-quantile extension to GLM-type mod-
elling for a Poisson variable, we do not explore the behaviour of corresponding small area estima-
tors for count data based on the M-quantile approach. This is an area of current research. We also
do not explore the extension of M-quantile modelling to multi-category data (e.g. multinomial
data). This remains an open problem.

APPENDIX

Let A denote a set of objects and let m denote a strictly positive integer. In what follows, we use the
notation srswr(A,m) to denote the set of size m obtained by sampling with replacement m times from
the set A.

Nonparametric bootstrap (NPB) procedure
Given a finite population U with values ydj (a binary variable) and a sample s drawn from it, the steps

of the NPB procedure are as follows:r (Step 1) From sample s, fit model (7) to the initial data and obtain predictors ˆ̄yMQ
d . For each small area

compute the pseudo-random effect ûMQ
d = x̄Td (β̂θ̂d − β̂0.5) at q = θ̂d. It is convenient to re-scale the

elements ûMQ so that they have mean equal to zero.r (Step 2) Construct the vector ûMQ∗ = {ûMQ∗
1 , . . . , ûMQ∗

D }T , whose elements are the components of
the set srswr({ûMQ

1 , . . . , ûMQ
D }, D).r (Step 3) Generate a bootstrap population U∗ of N independent bootstrap Bernoulli realisations made

up of D areas with area d of size Nd, and with bootstrap Bernoulli realisation y∗dj in area d taking the
value 1 with probability

p∗dj =
exp{xTdjβ̂0.5 + ûMQ∗

d }
1 + exp{xTdjβ̂0.5 + ûMQ∗

d }
, j = 1, . . . , Nd.r (Step 4) Calculate the bootstrap population parameters ȳ∗d , d = 1, . . . , D.r (Step 5) Extract a sample s∗ of size n from the bootstrap population U∗ using the same sample design

as that used to obtain the original sample and calculate the bootstrap M-quantile predictor ˆ̄yMQ∗
d , d =

1, . . . , D.r (Step 6) Repeat steps 2-5 B times. In the bth bootstrap replication, let ȳ∗(b)d be the quantity of interest
for area d and let ˆ̄y

MQ∗(b)
d be its corresponding M-quantile estimate.r (Step 7) The NPB estimator of the MSE of ˆ̄yMQ

d is

mseNPB(ˆ̄yMQ
d ) = B−1

B∑
b=1

(
ˆ̄y
MQ∗(b)
d − ȳ∗(b)d

)2
. (A1)

Random effect block bootstrap (REBB) procedure
The steps in the REBB bootstrap are as follows.r (Step 1) Calculate D vectors of marginal residuals rMQ

d = (rMQ
dj ) = xTdj(β̂θ̂d − β̂0.5), j =

1, . . . , nd, d = 1, . . . , D, re-scaling the elements of the vector rMQ
d so that they have mean equal

to zero.



23r (Step 2) Construct the individual bootstrap errors for the Nd population units in area d as rMQ∗
d =

(rMQ∗
dj ) = srswr(rMQ

h(d), Nd) where h(d) = srswr({1, . . . , D}, 1).r (Step 3) Generate a bootstrap population U∗ of N independent bootstrap Bernoulli realisations made
up of D areas with area d of size Nd, and with bootstrap Bernoulli realisation y∗dj in area d taking the
value 1 with probability

p∗dj =
exp{xTdjβ̂0.5 + rMQ∗

dj }
1 + exp{xTdjβ̂0.5 + rMQ∗

dj }
, j = 1, . . . , Nd.r (Step 4) Calculate the bootstrap population parameters ȳ∗d , d = 1, . . . , D.r (Step 5) Extract a sample s∗ of size n from the bootstrap population U∗ using the same sample design

as that used to obtain the original sample and calculate the bootstrap M-quantile predictor ˆ̄yMQ∗
d , d =

1, . . . , D.r (Step 6) Repeat steps 2-5 B times. In the bth bootstrap replication, let ȳ∗(b)d be the quantity of interest
for area d and let ˆ̄y

MQ∗(b)
d be its corresponding M-quantile estimate.r (Step 7) The REBB estimator of the MSE of ˆ̄yMQ

d is

mseREBB(ˆ̄yMQ
d ) = B−1

B∑
b=1

(
ˆ̄y
MQ∗(b)
d − ȳ∗(b)d

)2
. (A2)
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