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Abstract

Problem statement : While modeling the volatility of returns is essential for many
areas of finance, it is well known that financial return series exhibit many non-normal
characteristics that cannot be captured by the standard GARCH model with a normal
error distribution. But which GARCH model and which error distribution to use is still
open to question, especially where the model that best fits the in-sample data may not give
the most effective out-of-sample volatility forecasting ability which we use as the criterion
for the selection of the most effective model from among the alternatives. Approach:
In this study, six simulated studies in GARCH (p,q) with six different error distributions
(normal, skewed normal, student-t, skewed student-t, generalized error distribution and
skewed generalized error distribution) are carried out. In each case, we determine the
best fitting GARCH model based on the AIC criterion and then evaluate its out- of-
sample volatility forecasting performance against that of other models. The analysis is
then carried out using the daily closing price data from Thailand (SET), Malaysia (KLCI)
and Singapore (STI) stock exchanges. Results : Our simulations show that although
the best fitting model does not always provide the best future volatility estimates the
differences are so insignificant that the estimates of the best fitting model can be used with
confidence. The empirical application to stock markets also indicates that a non normal
error distribution tends to improves the volatility forecast of returns in the presence of
heavy-tailed, leptokurtic and skewness. Conclusion : The volatility forecast estimates
of the best fitted model can be reliably used for volatility forecasting. Moreover, the
empirical studies demonstrate that a skewed error distribution outperforms other error

distributions in terms of out-of-sample volatility forecasting.
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1 Introduction

The general properties of financial time series that are called stylized characteristics become
very important in applied economic analysis (Liu and Hung, 2010). Cont (2001) examined
stylized statistical properties of asset returns, common to a wide set of financial assets, such
as heavy tails, leptokurtic distribution, volatility clustering, absence of autocorrelations and
leverage effect. The Autoregressive Conditional Heteroskedasticity (ARCH) model with nor-
mal innovations first introduced by Engle (1982) captured some of stylized characteristics of
financial assets. Later generalized ARCH model (GARCH) by Bollerslev (1986) further im-
proved the modeling process. But, traditionally, stock returns were modeled by time series
with normal errors. Unfortunately, such models still failed to sufficiently capture the main
stylized characteristics of financial time series, i.e. the heavy tails, leptokurtic and skewness.

A number of papers have investigated the performance of GARCH models with non-normal
error distribution in mature stock markets. Hansen (1994) considered a GARCH model with
skewed-student-t distribution to capture the skewness and the excess kurtosis. Liu and Hung
(2010), and Bali (2007) proposed GARCH models with skewed generalized error distribution
(SGED). Gokcan (2000) compared the performance on volatility forecasting of GARCH(1,1)
model versus EGARCH(1,1) model using the the monthly stock market returns of seven emerg-
ing countries. It found that the GARCH(1,1) model outperforms the EGARCH model, even
if the stock market return series exhibit skewed distributions. Chuang et al. (2007) inves-
tigated the volatility forecasting performance of GARCH (1,1) model with various distribu-
tional assumptions on stock market indices and exchange markets. Their results show that a
GARCH(1,1) model combined with the logistic distribution, the scaled student’s distribution
or the Riskmetrics model is preferable both in stock markets and foreign exchange markets.
Curto and Pinto (2009) considered ARMA-GARCH(1,1) models driven by Normal, Student’s t
and stable Paretian distributional assumptions. They found that a ARMA-GARCH(1,1) model
with stable Paretian error fits returns better than normal distribution and slightly better than
the Student’s t distribution.

Some researchers also applied GARCH models to daily closing price data from South East
Asian emerging stock markets. Shamiri and Isa (2009) examined the relative efficiency of
several different types of GARCH models in terms of their volatility forecasting performance.
They compared the performance of symmetric GARCH, asymmetric EGARCH and non-linear
asymmetric NAGARCH models with six error distributions (normal, skew normal, student-t,

skew student-t, generalized error distribution and normal inverse Gaussian). Komain (2007)



fitted stock market index in the stock exchange of Thailand (SET) by ARMA-GARCH(1,1) to
examine the behaviour of stock prices. However, these previous investigations into the volatility
forecasting performance of GARCH models in the emerging stock markets of South East Asia
are reported mainly on the different types of GARCH model with order p=1 and q=1. Those
investigation did not mention if higher order of model had been investigated or not. In this
paper, we investigate whether it is more appropriate to use higher order GARCH model to fit
some indices. Therefore, we are interested if the conclusion given by previous research is still
holds for GARCH models without presetting their orders.

Several extensions of the traditional symmetric GARCH(p,q) model have been introduced to
increase the flexibility of the original GARCH model such as asymmetric and non-linear asym-
metric GARCH model which consist of various GARCH models, for example the exponential
GARCH(EGARCH), GJR GARCH of Glosten Jagannathan and Runkle (1993), the quadratic
GARCH of Sentana (1995) and the threshold GARCH (TGARCH) of Zakoian (1994). To sim-
plify the analysis, we restrict our study to GARCH(p,q) and compare the volatility forecasting
performance of models with different error distributions, including Normal(N), Skewed Nor-
mal (SN), Student-t (STD), Skewed Student-t (SSTD), Generalized Error Distribution (GED)
and Skewed Generalized Error Distribution (SGED). The main reason for choosing these six
types of error distributions is to take into account the skewness, excess kurtosis and heavy-tails
of return distributions. It is clear that Student-t and GED distributions exhibit heavy-tails.
Moreover, Skewed Student-t and SGED distributions also allow various type of skewness and
heavy-tails.

The main objective is to investigate whether the best fitting model, in terms of the Akaike
information criterion (AIC) also provides the best volatility forecasts of the underlying series
in terms of the Mean Squared Error (MSE) criteria and the Mean Absolute Error (MAE).

Since emerging stock markets in South East Asia are of empirical interest to both of indi-
vidual and institutional investors, three emerging stock markets in South East Asia, Thailand
(SET), Kuala Lumpur Composite Index (KLCI) from Malaysia and Straits Time Index (STI)
from Singapore are studied in this paper.

The paper is organized as follows. The next section describes the data used in this paper,
methodology, the distributions of error in GARCH models and measurements used to evaluate
forecast performance. The results of simulation to find the best fitted model and the best fore-
casting model are reported in Section 3. The studies on real data and the volatility forecasting

performance of different models given by real data are presented in Section 4 . The last section



gives our conclusions.

2 Data and Methodology

2.1 Data and GARCH models

The data employed in this study comprise 6,536 daily closing price on SET covering the period
4/01/1982 to 11/08/2008 ; 3,880 daily closing price on KLCI covering the period 3/12/1993 to
21/08/2009 and 5,407 daily closing price on STI covering the period 28/12/1987 to 21,/08/2009.

Each data set is divided into two subsets. The first subset is called in-sample data set used
to build up a model for underlying data and the second subset is called out-sample data set
used to investigate the performance of volatility forecasting.

The in-sample period for SET starts from 4/01/1982 to 14/05/1996 with 3,535 daily obser-
vations ; for KLCI starts from 3/12/1993 to 23/12/1999 with 1,500 daily observations and for
STTI starts from 28/12/1987 to 19/01/1998 with 2,500 daily observations. The out-sample pe-
riod starts from 15/05/1996 to 11/08/2008 for SET; from 24/12/1999 to 21,/08/2009 for KLCI
and from 28/12/1987 to 21/08,/2009 for STI.

Logarithm of daily return is defined as follows :

Ty = ln[pt/pt—l]

is considered in this study, where p, denotes the closing price index at time t. The statistical
package used in this study is R version 2.11.1.
A GARCH (p,q) model for time series r, is defined as follows :

Ty = W&y,

& = 7775\/h_t7
P q

h;, = w—i-zaig?_i‘*’Zﬁjhtfjv
i=1 j=1

where p is constant parameter; 7; are i.i.d with E(n;) = 0 and Var(n,) = 1; 1, is independent
of hy; w> 0, a;> 0 and ;> 0 are non-negative constants with Zf:1a1-+2;1-:15j<1 to ensure
the positive of conditional variance and stationarity as well. If ¢ = 0 the model reduces to an
Autoregressive Conditional heteroscedasticity (ARCH) model.

GARCH(p,q) models with normal error distribution often fail to capture leptokurtic (high



kurtosis and heavy-tailed) of underlying time series but various non-normal error distributions
have been suggested. Hansen (1994) used the skewed t distribution to capture the skewness
and the excess kurtosis. Lee and Pai (2010) applied the student-t and SGED distributions to
investigate the volatility prediction of the GARCH model. In order to capture leptokurtic of
ry, non-normal distribution for ¢; is suggested. For the purpose of this study, six types of error
distributions are considered. The standard process is followed in this study to identify the order

of a GARCH(p,q) model and AIC criterion is used to determine the best fitted GARCH model.

2.2 The distribution of error ¢

Six different types of error distributions are considered in this paper.

1. Normal Distribution

2. Skewed Normal Distribution !

1 —-9? [T _g2
f(z) =— e 22 ez di, —o00o<z<o0,

wTm

—00

where ¢ denotes the location ; w denotes the scale and a denotes the shape of density.

3. Student-t Distribution 2

vl 2
f(z) = \/FVLW—;()%)(l + %)_(Vgl), —00 < z < 00,

where v denotes the number of degrees of freedom and I' denotes the Gamma function.

4. Skewed Student-t Distribution 3

f(z;l’t?O.?V?)\):

be(1 + 5L (O T, it 2 <
1

be(1 + 5 (A T, it 22 -4,

1See Shamiri and Isa (2009)
2See Shamiri and Isa (2009)
3See Bali (2007)



where v is a shape parameter with 2 < v < oo and A is a skewness parameter with —1 < A < 1.

The constants a,b and ¢ are given below

) | ==t
Y ), b=14+3\—-a*> and c= &)

a = 4\¢( :
v -0

p and o2 are the mean and variance of the skewed student-t distribution.

5. Generalized Error Distribution (GED) *

—0.5|(=54)/A1")

o

. _0_11/6(
flzip,ov) = NO+HUIT(1 /)

1 <2z < o0,

v > 0 is the degrees of freedom or tail -thickness parameter and

A= /2020 (1/v)T(3/v).

If v = 2, the GED yields the normal distribution. If v < 1, the density function has thicker

tails than the normal density function, whereas for v > 2 it has thinner tails.

6. Skewed Generalized Error Distribution ®

|Z — 5|V )
[1 — sign(z — §)E]v 07

fzv,8) = v[200(1/v)] " exp(—
where

0 = T(1/w)*TE/v) s,
§ = 26AS(9)7,

S(€) = V1+3¢2—44282,
A = TE/mTA/v) " T(3/v)™*,

where v > 0 is the shape parameter controlling the height and heavy-tail of the density function
while £ is a skewness parameter of the density with —1 < & < 1.
In simulation studies in Section 3, all parameters in the above distribution are the default

values in R package, location, scale and skewness parameter are equal to 0, 1 and 1.5 respec-

4See Bali (2007)
5See Lui et al (2009)



tively. Shape parameter is equal to 5 for student-t and skewed student-t distribution and equal

to 2 for GED and skewed GED distribution.

2.3 Evaluation of volatility forecasts

While there are several different measurements for evaluating volatility forecasting perfor-
mances, the mean absolute error (MAE) and the mean square error (MSE) (See Lui et al, 2009)
are used in this study. When the true underlying volatility process is unobservable, we adopt
Awartani and Corradi’s (2005) suggestion to use (r; —7)? as a proxy for latent volatility in this

scenario. The MAE and MSE for n step ahead forecast are defined as follows :

N
MAE(n) = %; (P — )7 = hu(n)| (2.1)
1 o 27 2
MSE(n) = N;K”*” —7)? = h(n)? (2.2)
where
rirn : the return over horizon n steps ahead at current time ¢ |
r : the mean of return ,

fzt(n) : the forecasted conditional variance over horizon n steps ahead at current time ¢.

For simplicity, we will drop n from MAE(n) and MSE(n).

3 Simulation studies

Shamiri and Isa (2009) showed that the best fitted model based on AIC criterion is not
necessarily a model that is able to provide the best forecast of volatility in terms of MSE
and MAE. Their conclusion is made based on the study on KLCI fitted by GARCH(1,1),
EGARCH(1,1) and NAGARCH(1,1). For some financial data sets, a higher order GARCH is
more appropriate than a GARCH(1,1). Thus, we are interested to see if Shamiri and Isa’s
statement is still valid when the underlying best fitted model is a higher order GARCH model.

We use the data simulated from the following two models to carry out our study. The two

models are defined as follows :

Ty = Q&



GARCH(1,3) model :
he = 0.00007 + 0.02354¢2 | + 0.05387hy_y + 0.00127h,_s + 0.18574h,_5 ;  (3.3)

GARCH(2,1) model :
he = 0.00008 + 0.05334c2 | + 0.061472_, + 0.08599h; ;. (3.4)

Both of models are higher order of GARCH models. The coefficients in (3.3) and (3.4)
were borrowed from the fitted models with normal error distribution for SET and STT in Section
2.1 respectively.

We simulated 6,536 and 5,407 observations from (3.3) and (3.4) respectively. Six types
of error distributions, Normal, Skewed normal, Student-t, Skewed student-e, GED and Skewed
GED are considered for ¢; in this study. Each data set are divided into two parts. The first
part is for in-sample observations which is used to estimate the coefficients in the fitted model,
(3,535 and 2,500 observations for GARCH(1,3) and GARCH(2,1) model respectively). The
second part is served as out-sample observations used for investigating the volatility forecasting
performance.

We fit each data set by the same order of the GARCH model where the data were simulated
from, with six different error distributions respectively. Then compare the values of AIC given
by each fitting and determine which model is the best fitted model for the underlying data
set. We also evaluate the out-of-sample 1 step ahead forecasting on conditional volatility and
compare the performance of each GARCH model with different error distributions measured
by MSE and MAE. The results are shown in Tables 1 and 2.

From Tables 1 and 2, we can see that the true model is always the best fitted model in terms
of the AIC criterion but the true model does not necessarily provide the minimum values of
MSE and MAE and might not produce the best performance of forecasting volatility. For this
particular sample, our simulation study shows that the statement “the best fitted model does
not necessarily provide the best forecast on volatility” also holds for higher order of GARCH
models.

Shamiri and Isa (2009) argue that there are several plausible models that we can select to
use for our forecast and we should not be fooled into thinking that the one with the best fit
is the one that will forecast the best. However, how much difference between the best forecast

and the forecast given by the best fitted model? To investigate this question, for each of the six



different distribution of £, we independently simulated 100 samples from (3.3). Each sample
has size 6,536. The first 3,535 observations were considered as in-sample data and the remains
were considered as out-sample data. For each set of simulated data, we fit the data by models
with the six different error distributions respectively, and then calculate the value of MSE and

MAE. We carry out pair t-test on the following hypothesis :

Ho @ po—p=0
Hy ¢ pg— >0

where
fe  denotes the mean of MSE (MAE) given by the best fitted model
tp  denotes the mean of MSE (MAE) given by the best performance model

The reason to carry out this test is to check if the mean of MSE and MAE from the best
fitted model are statistically significantly larger than the mean of MSE and MAE from the best
performance model. If the null hypothesis cannot be rejected, it will mean that statistically the
best performance model will not provide better volatility forecast than the best fitted model in
terms of MSE(MAE) value. The P-values of the positive one tail paired t-test for 1-step and

10-step ahead forecast are shown in Table 3.



Table 1: AIC, MSE and MAE for Simulated Data from GARCH(1,3)

The distribution used in the fitted model
Normal Skewed | Student-t | Skewed GED Skewed
Normal Student-t GED
Normal
AIC -6.39728 | -6.39673 | -6.38562 | -6.38507 | -6.39678 | -6.39622
MSE 33.27150 | 33.19940 | 39.41210 | 39.40620 | 32.80390 | 32.73420
MAE 5.76153 5.75527 6.27168 6.27122 5.72081 5.71471
Skewed Normal
AIC -6.46464 | -6.52380 | -6.45955 | -6.51125 | -6.46409 | -6.52332
MSE 1.69244 1.96543 2.58870 | 0.74882 1.69292 1.92887
MAE 1.24786 1.36565 1.56406 | 0.80091 1.24806 1.35239
Student-t
AIC -6.35970 | -6.36029 | -6.47920 | -6.47864 | -6.46384 | -6.46331
MSE 0.06376 | 0.07311 0.07454 4.53249 6.78319 6.73794
MAE 0.13589 | 0.21205 0.21138 2.11192 2.59203 2.58324
Skewed Student-t
AIC -6.37249 | -6.49380 | -6.53352 | -6.60656 | -6.57894 | -6.57441
MSE 0.18411 | 22.03428 | 1.32608 2.91688 | 0.17645 0.17655
MAE 0.28982 4.68293 1.09884 1.67549 | 0.28451 0.28541
GED
AIC -6.38848 | -6.38847 | -6.37966 | -6.37958 | -6.38870 | -6.38831
MSE 50.33190 | 50.40620 | 6.83721 | 47.55250 | 50.10220 | 50.18850
MAE 7.08312 7.08836 | 2.58594 | 6.88431 7.06691 7.07302
Skewed GED

AIC -6.44193 | -6.50376 | -6.43582 | -6.49304 | -6.44138 | -6.50432
MSE 7.06841 | 12.10115 | 7.69763 | 49.95989 | 7.13673 12.16423
MAE 2.63916 | 3.46648 2.75687 7.06309 2.65211 3.47556

Notes: MSE (x1071%) and MAE (x107°) . Bold value in each row is the minimum value

Table 3 shows that all the tests are not significant. It indicates that, although based
on the outcomes in Tables 1 and 2, the best fitted GARCH model does not provide the best
volatility forecast. Therefore, the best fitted model is still able to make the reasonable forecast

on volatility.

4 Empirical studies

Our simulation studies in previous section indicated that sometimes the best fitted model
might not necessarily provide the minimum values of MSE and MAE and might not necessarily
produce the best performance of forecasting volatility. However, the best fitted model is still

able to provide a reasonable forecast on volatility. In this section, we want to further find out
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Table 2: AIC, MSE and MAE for Simulated Data from GARCH(2,1)

The distribution used in the fitted model
Normal Skewed | Student-t | Skewed GED Skewed
Normal Student-t GED
Normal
AIC -6.34650 | -6.34588 | -6.33400 | -6.33349 | -6.34572 | -6.34509
MSE 3.31193 3.30401 5.85204 5.84641 3.31212 3.30389
MAE 1.76076 1.75851 2.37478 2.37358 1.76081 1.75847
Skewed Normal
AIC -6.34699 | -6.42474 | -6.34473 | -6.41400 | -6.34648 | -6.42411
MSE 17.09890 | 14.46090 | 19.47580 | 17.37420 | 17.42360 | 14.22260
MAE 7.03734 3.69947 4.32193 4.07312 4.07724 3.66710
Student-t
AIC -6.32700 | -6.32730 | -6.42443 | -6.42372 | -6.41384 | -6.41317
MSE 1.10375 1.20011 3.20177 3.24368 1.57030 1.59460
MAE 0.93421 0.99052 1.70281 | 0.17149 | 1.16479 1.17546
Skewed Student-t
AIC -6.33295 | -6.45439 | -6.50478 | -6.58470 | -6.56589 | -6.55410
MSE 4.34869 1.50253 3.37669 3.48624 | 1.50023 1.51042
MAE 2.05233 1.16904 1.79784 1.82853 | 1.69584 1.67588
GED
AIC -6.33936 | -6.33926 | -6.33103 | -6.33097 | -6.33913 | -6.33784
MSE 3.75521 | 3.75199 | 5.76655 5.77420 3.75648 72.33824
MAE 1.84973 | 1.84889 | 2.31291 2.31451 1.85006 8.47768
Skewed GED
AIC -6.38937 | -6.44594 | -6.38137 | -6.43504 | -6.38863 | -6.44673
MSE 28.74100 | 23.95710 | 3.35241 | 21.70430 | 28.52270 | 23.92570
MAE 5.30064 4.80787 | 1.70891 | 4.56184 5.28007 4.80455

Notes: MSE (x1071%) and MAE (x107°), Bold value in each row is the minimum value

Table 3: The P-values of Paired Test result between the best fitted model and the best perfor-
mance model given by samples from GARCH(1,3)

1-step 10-step

The best fitted | MSE | MAE | MSE | MAE
model

N 0.3254 | 0.2517 | 0.3452 | 0.3543

SN 0.5871 | 0.9945 | 0.9845 | 0.9541

STD 0.8124 | 0.2641 | 0.9802 | 0.9678

SSTD 0.1934 | 0.3454 | 0.3546 | 0.2276

GED 0.0842 | 0.1104 | 0.1489 | 0.2978

SGED 0.3891 | 0.4512 | 0.3845 | 0.3312
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whether the best fitted is appropriate to be used for forecast on volatility based on the real

data.

4.1

Descriptive statistics

The summary statistics of return series r, for SET, KLCI and STI are presented in Table 4.

It shows that the mean of the returns for SET is slightly larger than the means of the returns for

KLCI and STT markets. Both of the return series for SET and KLCI display negative skewness

while the STI shows the positive skewness. All return series are leptokurtic and normality test

for all return series are firmly rejected by the Jarque-Bera statistics. All return series have

non-normal distributions.

Table 4: Summary Statistics for returns

Sample | Mean (x107%) | Standard Deviation | Skewness | Excess Kurtosis | Jarque-Bera
SET | 6,536 0.289 0.01562 -0.06808 7.9577 17220™
KLCI | 3,880 -0.030 0.01554 -0.43354 40.7329 2675747
STI 5,407 -0.200 0.01331 0.11628 8.3077 15526™

SET

0.05 0.10

-0.05 0.00

-0.10

-0.15

T T T T T T T
0 1000 3000 5000

SET daily return

0.2
1

0.1

KLCI
0.0
1

-0.1
Il

STI
0.00 0.05 0.10
1 1 |

-0.05

-0.10

0 1000 2000 3000 4000 0 1000

KLCI daily return

T T T T
3000 5000

STl daily return

Figure 1: The daily return of SET, KLCI and STI

Figure 1 shows the time series plots of the daily returns for SET, KLCI and STT respec-

tively. Volatility clustering phenomenon are clearly observed from the plots. It indicates that

GARCH models may be appropriate models for explaining these data.
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4.2 In-sample parameter estimation and model diagnostics

R package “Garch” is used to find the best fitted GARCH model among the models with
different error distributions for in sample data and the estimation of parameters in the model.
According to the results of sensitivity analysis, we found that changing error distributions does
not change the order of the best fitted GARCH model (the reports are missing from this paper).
Therefore, to save time in analysis processes, the orders of the best fitted model with different
error distributions are chosen as the best fitted model with normal distribution. It was found
that GARCH (1,3), GARCH(1,1) and GARCH(2,1) are appropriate for SET, KLCI and STI
respectively. Then we apply GARCH(1,3), GARCH(1,1) and GARCH(2,1) to SET, KLCI and
STT respectively, by assigning the six different distributions to the error in the models. The
AIC values given by different models with different error distributions are reported in Table 5.
Based on AIC criterion, GARCH(1,3) with error distribution SSTD is the best fitted GARCH
model for SET, GARCH(1,1) with GED for KLCI and GARCH(2,1) with STD for STI.

Table 5: The AIC values given by models with different error distributions

AIC Normal | Skewd normal | Student-t | Skewed Student-t GED Skewed GED
SET | -6.4703 -6.4749 -6.5421 -6.5432 -6.5376 -6.5409
KLCI | -6.9142 -6.9137 -6.9583 -6.9575 -6.9608 -6.9596
STI -6.0739 -6.0735 -6.1104 -6.1100 -6.1061 -6.1058

Tables 6-8 show the estimates of parameters in each of the best fitted GARCH models,
as well as the test statistics given by Lagrange Multiplier Test (LM test) and Ljung-Box @

statistic.

Table 6: Estimated parameters and diagnostic of GARCH(1,3)-SSTD model for SET

SET GARCH(1,3) | Skewed Student-t P-value

L 1.193%1074 0.2798

w 7.128%10°7 0.0014**
o 2.728+107 ! 1115107 15x
B 5.839x1071 0.0007***
B2 1.000%107* 0.0752*
B3 1.897x107! 0.00812*
A 9.469x10~* < 2%10 710+
v 5.0330 < 210710
LM Test 14.6032 0.2638
Q(15) 17.1584 0.3094

13



Table 7: Estimated parameters and diagnostic of GARCH(1,1)-GED model for KLCI

KLCI GARCH(1,1) GED P-value

1 -5.005+«10~* |  0.0004***
w 8.607%10~7 0.0259*
a; 1.136%107" | 1.11%107 7
051 8.809x1071 | < 2%10716%**
v 1.3110 < 2410 10w
LM Test 15.2401 0.2286
Q(15) 15.3440 0.4269

Table 8: Estimated parameters and diagnostic of GARCH(2,1)-STD model for STI

STI GARCH(2,1) | Student-t P-value
I -5.850%10~* 0.0015**
w 1.962%107° 0.0017*
o 5.339x102 0.0464*
Qo 6.893%10~2 0.0262*
e 8.733%1071 | < 2+10~ 6%
v 7.6690 2.27+10~ 12
LM Test 8.4077 0.7525
Q(15) 0.4368 0.8535

All parameters in GARCH(1,3), GARCH(1,1) and GARCH (2,1) for SET, KLCI and STI
respectively are significant at 5% level. For each index data set, LM test supports the absence
of ARCH effect in the residuals and the value of Q) statistic is not significant. It shows that
all the best fitted GARCH models are sufficient to correct the serial correlation of the returns

series in the conditional variance equation (Liu and Hung 2010).

4.3 The performance of volatility forecasting

In this section, we adopt the best fitted models for SET, KLCI and STT in Section 4.2.
By taking the same order of model and replacing the error distribution by other distributions
mentioned in Section 2.2, we obtain six different fitted models for each index. Then we use
each of these models to make out-sample forecasts. The performances of 1,2,10 and 15 steps

ahead forecasts are evaluated and reported in Tables 9 and 10.
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Table 9: Out-of-sample volatility forecasting evaluated by MSE

Step-Ahead Normal | Skewed | Student-t | Skewed | GED | Skewed
Normal Student-t GED
SET:GARCH(1,3)
1 2.561 2.551 2.560 2.553 2.557 | 2.543
2 2.534 2.524 2.546 2.539 2.539 | 2.525
10 2.995 2.992 3.139 3.011 3.033 | 3.058
15 2.985 2.982 3.207 3.004 3.028 | 3.084
KLCI:GARCH(1,1)
1 6.847 7.105 4.390 4.096 3.471 | 3.468
2 1.050 1.051 1.032 1.032 1.035 | 1.027
10 3.614 3.771 2.126 1.942 1.561 | 1.544
15 9.586 5.001 5.639 5.153 4.122 | 4.096
STL:GARCH(2,1)
1 1.929 1.922 1.926 1.934 1.933 | 1.929
2 1.927 1.918 1.933 1.929 1.928 | 1.924
10 2.694 2.688 2.710 2.708 2.703 | 2.701
15 2.629 2.624 2.644 2.643 2.637 | 2.636

Notes: The reported value is multiplied by (x1077). The minimum value of MSE in the
same raw is in bold.

Table 10: Out-of-sample volatility forecasting evaluated by MAE

Step-Ahead Normal | Skewed | Student-t | Skewed | GED | Skewed
Normal Student-t GED
SET:GARCH(1,3)
1 2.244 2.241 2.325 2.453 2.281 | 2.287
2 2.312 2.311 2.419 2.334 2.361 | 2.372
10 2.614 2.601 2.857 2.622 2.688 | 2.745
15 2.771 2.763 3.018 2.792 2.831 | 2.903
KLCI:GARCH(1,1)
1 2.528 2.578 1.995 1.921 1.764 | 1.747
2 2.440 2.448 2.311 2.323 2.325 | 2.305
10 1.898 1.939 1.454 1.390 1.252 | 1.238
15 3.093 3.160 2.371 2.266 2.044 | 2.020
STI:GARCH(2,1)
1 2.207 | 2.203 2.218 2.217 2.214 | 2.213
2 2.185 2.182 2.199 2.198 2.195 | 2.193
10 2.538 2.535 2.552 2.549 2.545 | 2.543
15 2.509 2.507 2.521 2.518 2.515 | 2.513

Notes: The reported value is multiplied by (x1077). The minimum value of MAE in the
same raw is in bold.

Results in Tables 9 and 10 show that the best fitted models in each stock market does not
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Table 11: The percent error of MSE and MAE given by the best fitted model and the best
performance model

The percent error of MSE error
SET KLCI STI
Step-Ahead | Difference | PE(%) | Difference | PE(%) | Difference | PE(%)
1 0.002 0.078 0.003 0.086 0.004 0.207
2 0.015 0.591 0.008 0.773 0.015 0.776
10 0.019 0.631 0.017 1.089 0.022 0.812
15 0.022 0.732 0.026 0.631 0.020 0.756
The percent error of MAE error
SET KLCI STI
Step-Ahead | Difference | PE(%) | Difference | PE(%) | Difference | PE(%)
1 0.012 0.489 0.017 0.964 0.015 0.676
2 0.023 0.985 0.002 0.860 0.017 0.773
10 0.021 0.801 0.0014 1.118 0.017 0.666
15 0.029 1.039 0.024 1.174 0.014 0.555

provide the best volatility forecasts in terms of the values of MSE and MAE. To investigate the
different of the values of MSE(MAE) given by the best fitted model and the best performance
model, we evaluate the Percent Error (PE) of MSE(MAE) for each underlying cases where PE

is defined as follows :

A-B
PE = x 100%

where
A denotes MSE (MAE) given by the best fitted model
B denotes MSE (MAE) given by best performance model

The PE values are reported in Table 11. It shows that the majority of PE values are
small and less than 1.2%. It indicates that MSE(MAE) given by the best fitted model is not
statistically different from that given by the best performance model. In practical situations,

we still can use the best fitted model for volatility forecasting.

5 Conclusion

This paper investigates the volatility forecasting capability of GARCH(p,q) models with six
different type of error distributions and apply them to three South East Asian emerging stock
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markets. Our results show that a GARCH(p,q) model with non-normal error distributions
tends to provide better out-of-sample forecast performance than a GARCH(p,q) model with
normal error distribution.

Simulation and empirical studies show that MSE(MAE) given by the best fitted model is
insignificantly different from that given by the best forecast performance model. Since it is not
practicable to identify the best performance model in practice, this study clearly demonstrates

that it is reliable to use the best fitted model for volatility forecasting.
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