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Abstract

A standard approach to analyzing n binary matched pairs being usually repre-
sented in n 2 X 2 tables is to apply a subject-specific model; for the simplest situation
it is the so-called Rasch Model. An alternative population-averaged approach is to
apply a marginal model to the single 2 x 2 table formed by n subjects. For the sit-
uation of having an additional stratification variable with K levels forming K 2 x 2
tables, standard fitting approaches, such as generalized estimating equations and max-
imum likelihood, or alternatively the standard Mantel-Haenszel (MH) estimator can
be applied. However, while all these standard approaches are consistent under a large
stratum limiting model, they are not consistent under a sparse-data limiting model.
In this paper, we propose a new MH estimator along with a variance estimator that
are both dually consistent; consistent under large stratum and under sparse data lim-
iting situations. In a simulation study the properties of the proposed estimators are
confirmed and the estimator is compared with standard marginal methods, and also
with subject-specific estimators. The simulation study also considers the case when
the homogeneity assumption of the odds ratios does not hold and the asymptotic limit
of the proposed MH estimator under this situation is derived. The results show that
the proposed MH estimator is generally better than the standard estimator, and the
same can be said about the associated Wald-type confidence intervals.

Keywords: bootstrap method, dual consistency, generalized estimating equations,
Mantel-Haenszel estimator, odds ratio.



1 Introduction

Binary matched pairs data {Y; = (Y;1,Yi2), i = 1,...,n} frequently occur in medical trials
and biological or social sciences. One approach to compare the probability of success for
two binary responses Y;1, Yo € {0, 1}, here also called items, uses subject-specific models,
and another uses marginal models. A popular subject-specific model is the Rasch model
1]

logit (Pr(Yig = 1)) = oy + B850 - Ipygy, i=1,...,n (1)

which assumes that Y;; and Y;s are independent, conditionally on «;; this is called the
local independence assumption. Here 1.4 is the indicator function, which is one if
condition cond is true, otherwise it is zero. Let n%, n% n'® and n'' denote the num-
ber of observations with outcomes Y = (0,0), (0,1), (1,0) and (1,1) respectively, with
n =n% +n% + nl0 4+ n!l Assume {o;} are fixed effects; the conditional maximum like-
lihood (CML), which conditions on the sufficient statistics for {«;}, gives the consistent
estimator ﬁAgﬁ& 1 = log(n'%/n®). Another popular estimator is the Mantel-Haenszel (MH)
[2] estimator. When applied to each of the n 2 x 2 tables formed by the n matched pairs,
it also gives 3540, = log(n'%/n°'). In each of the 2 x 2 tables, the columns refer to two
items and the rows refer to the binary responses (0 and 1). Alternatively, by treating {c;}
as random effects, model (1) has the form of a generalized linear mixed model (GLMM).
Given that the sample log odds ratio log(n*'n"?)/(n1%n%) > 0, the maximum likelihood
(ML) method gives BguLbMM = log(n'®/n""), independently of the random effects distri-
bution provided that consistency conditions are met [3]. All three estimators are equal:
A}S\%I - Bé*uj\l}L = Bf;uLbMM-

Independently of {«;} being random or fixed effects, the subject-specific model implies

that marginally there is a non-negative correlation between Y;; and Y;s unless a; = a. In
the latter case, the Rasch model becomes

logit (Pr(Yi, = 1)) = a + 7 1, (2)

and the ML method yields 3¢ = log{(n'tn*0)/(n%n*1)}, where the notation “+” de-
notes the sum over that index. The MH estimator also gives 34, = log{(n'*n*0)/(n%+tn*1)}
when applied to the single 2 x 2 table formed by the n subjects. When the Rasch model
has the form of model (2) then Y;; and Y;9 are marginally independent.

A marginal model has the same form as model (2)

logit (Pr(Yiz = 1)) = a + 8P - 1,9, (3)

but uses two common fitting procedures: ML or generalized estimating equations (GEE)
[4] approaches, to take the dependency between Y;; and Yjs into account. Model (3) has
population-averaged effect BP°P. Both approaches yield consistent estimates. For a good



summary see Agresti [5, Chapters 6, 10, 11, 12, 13]. Both 3™ and BP° have marginal
interpretations, population-averaged effects over all n subjects.

This paper considers the case of a confounding variable with K levels using marginal
models. For example a clinical trial could be conducted in several, say K, hospitals.
To be more general, we consider multiple (¢ > 2) binary observations per subject. The

observations for the ith subject in stratum k are Y, = (Yiik, Yiok, - - ., Yick), where i =
1,...,ng, k=1,..., K with Y, € {0,1}. These binary observations form ¢ dependent
binomial counts (Yiy, Yo, ..., Yer), where Yy = 0% Vigp for z =1,... ,c.

Liang [6] considered a marginal approach using the standard Mantel-Haenszel (MH)
estimator for dependent binomial responses, but for a different dependence situation. He
assumes the binary responses Y1, . . ., Yy, 2 that form the binomial responses Y3, for item
x are dependent, but items Yjz, Yy, for x # y are still assumed to be independent. For
matched pairs the opposite is true, in which items are dependent and binary observations
Yizr forming the binomial responses Y, are assumed to be independent.

An example for ¢ = 2 responses per subject is given in Table 1 and it shows both
patients’ self evaluation and investigators’ evaluation on the patients’ change in condition
who suffer from asthma, at the end of the study, conducted by Merck Research Labora-
tories. The data were stratified by K = 21 clinical centers with 4 treatments. Let Y;i; be
the patient’s self evaluation and Yjor be the evaluation from an investigator with values 0

(no change) and 1 (better) for the ith patient in the kth center. The table shows n(l)glk’

01 1
ol M2k

(1,0) and (1,1), respectively for the kth clinical center for each treatment. One ques-
tion researchers might ask is whether or not investigators are more positive towards the
patients’ improvement than the patients are themselves, controlling on clinical centers.

For this type of data, we can use either the subject-specific or the marginal approach
[7, 8], depending on the research question and the interpretation needed. This paper
focuses on the marginal approach with a possible stratifying variable, but not stratified
on the finest level as subject. Such a marginal approach might be more appealing to
clinicians, because in a clinical trial the investigator may be more interested in a population
averaged effect, an effect averaged over the patients. The stratification could lead to a
very sparse data set in the sense that within each stratum there are very few subjects. For
instance, a clinical study might use many clinics because of the time it takes each clinic to
recruit a sufficient number of patients. After stratifying the data according to the possible
confounding variable (here clinics), the data become sparse.

Let 7, = Pr(Yzx = 1) denote the (marginal) probability of a positive response and
Tk, denote the (marginal) probability of a negative response for item x = 1,...,c when a
subject lies in stratum k& = 1,..., K. Now we focus on the more general marginal model
with ¢ binary responses

and n!l . the number of patients with outcomes (Yjix, Yior) = (0,0), (0, 1),
12|k

logit () = ap + 87, z=1,...,¢c, k=1,... K. (4)



Regardless of the constraint for {87}, it follows that the log odds ratio (log W, =

g;”::i:y:z) equals B — Y =: P for all strata k. This is independent of k and
z|kTy

implies a common odds ratio ¥,y = W, for all strata. For instance, we might assume
that the effect W19 describing the difference between the patients’ self evaluation and the
investigators’ evaluation on the patients’ change in condition is equal for all clinics.

The estimate of ;" can be obtained using the MH, ML and GEE methods. Un-
der the standard assumption (e.g. [9, 10, 11]) that the underlying joint distribution
(Yiik, Yiok, - - -, Yier) follows a multinomial distribution, implying that the pairwise binary
responses (Y, Yiyk) with & # y are also multinomials, we show that the standard MH
estimator is not consistent under a sparse-data limiting situation (called limiting model
IT) for which K — oo, while all ng (the total number of subjects in stratum k with
ng = n +nd! +nl% + nll) remain bounded. All of the standard methods (MH, ML and
GEE) are only consistent under the large-stratum limiting model (called limiting model
I) (K is bounded, whereas ny — 00). This paper proposes a new MH estimator and its
variance estimator that are dually consistent, i.e. consistent under both limiting models I
and II. We expect the new MH estimator to perform well under a sparse-data situation,
e.g. as for clinical trial data comprising multiple centers, and none of the other marginal
fitting methods to perform well in this situation.

The new MH estimator and its variance estimator are introduced in Section 2. In
Section 3, we consider the ML and GEE methods for the marginal approach. Section
3 also illustrates the subject-specific approach through the CML and GLMM methods.
When the items are positively correlated, the subject-specific effect is different from the
population-averaged effect. In addition, we discuss the situation that the population-
averaged effect and the subject-specific effect take a similar value. Section 4 discusses
a meta-analysis situation not assuming a common odds ratio, where log ¥, ; follows a
normal or uniform distribution with mean log ¥, the main effect. We show that the MH
estimator is not consistent for log ¥,, under the sparse-data limiting model, but its limit
converges to ¢ log ¥, with some constant § < 1. A simulation study is presented in Section
5, where all methods are compared in terms of mean square errors and coverage of a 95%
confidence interval for the true parameter under various cases comprising negative and
positive correlations as well as independence. Section 6 shows the results using different
methods for the clinical trial example. The paper finishes with a general discussion, given
in Section 7, that also provides some further useful applications for the new MH estimator
when a population-averaged interpretation is sought.

2 Mantel-Haenszel (MH) Method

In this section we focus on the MH [2] estimators for the population-averaged effects

{80, x #y=1,...,c} of model (4). The notations for the MH estimators follow closely



the notations used by Greenland [12]. Let N, denote the number of positive responses for

item z = 1,...,c and stratum k£ = 1,..., K, and let n,; denote the number of negative
responses. The standard MH estimator has the form
U,y = Cuy/Cla (5)

with Cpy = Zle Caylk AN Cpyjly = Ny |y /M. Define Ly, := log \ilxy as the estimator
for the log odds ratio log ¥,,. The MH estimator for G5y is Ly,,.

Since Yir = (Yiik, Yok, - -, Yick) is a binary vector of length ¢ with ¢ = 1,...,ny and
k=1,...,K, there are 2¢ possible outcomes per stratum k£ = 1,..., K. Denote the cell
counts for all 2¢ possible outcomes by {n/, j = 1,...,2°}. We assume the underlying
distribution of {n’/ : j = 1,...,2°} is multinomial with parameters n; and {7/ : j =
1,...,2¢}. The marginal probabilities {7, : = 1,...,c} can be computed from the
joint probabilities {7rfC :7=1,...,2° by a linear transformation.

Table 1 shows the complete clinical trial data with all 22 = 4 (¢ = 2) possible outcomes
for each clinic. Similarly, let the pairwise observations (n22| k,ni(;' i) ng;‘ k,ni;‘ ) follow a

- o1 dictrihits : 00 10 01 11
multinomial distribution with parameters ny (stratum total) and (ﬂ'my‘ K Tyl Taylk Tyl i)

t
ylk
come (s,t) for items z and y in the kth stratum, with s,¢ € {0,1}. The pairwise observa-

tions can be obtained from the joint observations. For the clinical trial example both the
pairwise and full joint distribution are the same because ¢ = 2, but often multiple items
are recorded and then this distinction must be made. For the clinical trial example, 7'('%;‘ k
is the probability that both the patient himself/herself and the investigator evaluated the
change in condition as “better” in stratum k.

Greenland [12] considered two sampling models for each 2 x ¢ table: a) two rows of
multinomial observations, and b) ¢ independent binomials per stratum. He showed that
the MH estimator (5) is dually consistent under both sampling models and also proposed
dually consistent (co)variance estimators. The case of dependent binomial data, as in
Table 1, can be viewed as an extension of case b).

We can show that the standard MH estimator \ifxy is not dually consistent under
the dependent binomial case. From \ifxy — Wy = Quy/Cye with Quy = > wayp and
Waylk = Caylk — YayCye|k, We obtain

EQuy = B(Cry — VayCpa) = (1 = W) > (TauTyi — Tagpi)
k

(the pairwise probabilities), where 7'  is the probability of observing the pairwise out-

: _ / 11 : /A H
using Engpn, ., = nk[nkﬂﬂkﬂy‘k + ny‘k] with nj := ng — 1. In order for the estimator to

be consistent under limiting model II, we need E€2,, = 0. This happens only for the case
U,y = 1or W;;‘Jl p = TzkTyk- The latter is true, when items z and y are (conditionally,
given k) independent as in sampling model b). Appendix A shows the argument in detail
and the inconsistency is confirmed by the simulation study that follows.



Under limiting model I, the MH estimator \ifxy is still consistent. This consistency also
holds for both Greenland’s co- and variance estimators. Since the MH estimator is not
dually consistent anymore, it is likely to perform poorly under a sparse-data situation.
The simulation study in Section 5 shows the performance of the standard MH estimator
under both limiting models.

For the dependent binomial case — an extension of case b), we propose the following
new estimator for the common odds ratio ¥,

~ B Czy
xy = =

yx

: S _ = ~ _ = 10 . iy 10 01
with Cuy = > ) Coye and Epype = (Mgt — :cy\k)/nk7 Where by definition n_| Wik = Myalk:

Note, ¢,y differs from c,, |, only by the extra term n ok Also, define ny as the new
estimator for log ¥,,, i.e. ny = log \I'xy Since IEQW = 0, where Qxy = Waylk with
Weylk = Cay — VoyCyzy it follows that ‘ley is consistent under limiting model II. Under

limiting model I, the additional terms (compared to \ilzy) converge to zero. We conclude
that the new estimator is indeed dually consistent. .
Furthermore, we propose the following dually consistent variance estimator of L,

2 10 2 01
~ o= Zk (( a:y|k:) _n:cy\k) Zk (( ry\k) _nzy|k)
Usyy 1= Var(Lgy) = &2 02
Ty
nyn) +2n) —1 2,10 01 nlo n0l )2
N >kt kni —(n :ry\/’ﬁ_nﬂcylk)+ Pyl aylk — "I;( aylk wy\k)
Czyny

(6)

where nj = nj —1 and ny =nj — 2. Appendix A also gives the detail of the proof for the
dual consistency of W,, and its variance estimator. The following theorem summarizes
the findings.

Theorem 1 The new MH estimator f)zy and its new variance estimator nyy are dually
consistent for log ¥, in marginal model (/). The old MH estimators Ly, and (co)variance
estimators are consistent under limiting model I, and only consistent under model II for
U =1 or conditional independence.

Unfortunately, it does not seem feasible to provide new covariance estimators, because
of the complexity involved in computing the covariance of f;zy and Ly, (or ff:cy and f/wz).
To compute these covariances, we need to calculate higher moments based on the joint
distribution with 3 (or 4) items comprising 23 = 8 (or 2* = 16) joint probabilities. This is



far more complex than computing the higher moments for the variance of lNLIy involving
only 22 = 4 (pairwise) probabilities.

As an alternative estimate for the co- and variance of the new MH estimator, the
nonparametric bootstrap method [13] can be used, which randomly selects subjects with
replacement from the original data forming a new artificial sample from which a new
estimate ¥ is computed. Repeating this say B = 1,000 times creates a new sample of
\ifl, ey 0 B, from which the sample variance can be calculated, the so-called bootstrap
estimate of variance.

The variance estimators (MH type or Bootstrap variance) are used to construct Wald-
type confidence intervals (CI) to test for significance of the parameter ¥,,. There are other
more sophisticated bootstrap CI methods, such as the percentile method, the bootstrap
t-method (studentized pivotal) and the bias corrected accelerated (BCa) method, which
are all implemented in the function boot.ci of R-package boot [14, 15]. Carpenter and
Bithell [16] provide a good practical guide for bootstrap confidence intervals. For our
situation they recommend either the BCa method or the variance stabilizing bootstrap-t
method — an extension of the bootstrap-t method not provided by any R-package. This
extension is preferred over the bootstrap-t method when the estimator and its variance
estimator are not (approximately) independent. Figure 1 shows a typical situation for both
the standard and the new MH estimators versus their variance estimators for B = 1000
bootstrap samples. Apparently the standard MH estimator has a slight linear relationship
with its variance estimator, in contrast to the new MH estimator which seems almost
independent of its variance estimator. This suggests that bootstrap CI methods provided
by boot.ci are sufficient for our purposes. The simulation study that follows will also
investigate the coverage of the various confidence intervals.

3 Alternative Marginal and Subject-Specific Approaches

3.1 Maximum Likelihood Method for the Marginal Approach

One approach to fit model (4) maximizes the multinomial likelihood for the K stratified
2¢ tables while treating the model formula (4) as a set of constraint equations. Model (4)
is a generalized log-linear model (GLLM) of the form

ClogAm =Xz3 (7)

where 7r is a vector containing all K - 2¢ joint probabilities; C and A are matrices; X
is the design matrix and 3 is the vector of model parameters. Haber [17] and Lang and
Agresti [9] presented numerical algorithms for maximizing multinomial likelihoods subject
to constraints, i.e. model (7).

Many of the popular statistical packages do not have procedures available for ML fitting
of such marginal models. An R function (mph.Rcode.R) for the algorithm may be obtained



from Prof J. B. Lang of the Statistics Department, University of lowa http://www.stat.
uiowa.edu/~jblang/. This R function can fit a multinomial Poisson homogeneous model,
which is a wider class of model containing GLLM [11]. Bergsma et al. [18] proposed
another fitting algorithm directly built on the work of Lang and Agresti [9] and Lang [10].
They provided an R package called “cmm” for fitting such models. Their program is a
modification of the Lang-Agresti algorithm.

The ML estimator is not consistent for the sparse-data limiting model. The discussion
is as follows. The log-likelihood kernel /I has the following form

K 2° '
= ZZTL] logﬂ'i,
k=1 j=1

where j is the index referring to one of the 2¢ outcomes. For simplification, we consider

the case ¢ = 2 with items x and y. Now [l depends on the 2¢ = 4 joint observations ”22| k>

01 10 11 : : it 00 or 10 11 :
T ayler aylk and multinomial probabilities Tyl Taylk Taylk: xy| k The marginal
probabilities are computed by 7., = Wﬂlﬁg‘ et ﬂglc;:d p and my = gy| et wxm , and a similar

linear transformation applies to the observations. We have

10 11 11
Il = Z{nmylk log melk + nmy‘k log me|k + nmy‘k 108 Ty 1, + Mgy 1 108 melk}

_ 00 01 10 1
- nz klog(l T Myl — Taylk — Tz k:) +na¢ klogﬂ—x k+nm klogﬂ-x k+nm k:logﬂ-a: k
Y Y Y Y Y Yy Y Y Y Y

K

Z My i 108 (1 — expit(ag + BL7) — expit(ay + BF) + meug)
k=

+ nxylk log (expit(ak + [EP) — Wi;k) + ni&k log <expit(ozk + ByF) — ﬂi;lk> + nzy“c log ﬂ'xylk

using Telk = expit(ak + ﬂgop) = % given by (4) Maximizing Il subject to

model (4) means that we do not only obtain estimates for {ay : k =1,..., K}, 2 and

BP°P but also for the additional nuisance parameters {7!l :k =1..., K}. There are
Y zylk

2- K 42 parameters in total. For ¢ > 2, Il depends on even more parameters. This number
grows linearly with 2¢.

If the number of items ¢ becomes too large then the fitting becomes infeasible. Another
problem arises when the number of observations per stratum 7y, is small. Then the number
of parameters can become larger than the number of observations. If ng is bounded
and K — oo (limiting model II), then the ML is not consistent, because the number of
parameters goes to infinity as the number of observations N = Z,If:l ng does [19]. The
ML method yields consistent estimates only for limiting model I.


http://www.stat.uiowa.edu/~jblang/
http://www.stat.uiowa.edu/~jblang/

3.2 Generalized Estimating Equations for the Marginal Approach

The generalized estimating equations (GEE) method [4] is a multivariate extension of the
quasi-likelihood method for which we do not need to specify the full joint distribution of
the ¢ items (Yjik, ..., Yiex). It only needs the structure for how the variance depends on
the mean and the correlation structure of the ¢ items. For the latter, one can make a
choice for the “working correlation”, such as independence, exchangeable or unstructured.
The “robust” standard error adjusts the standard error using a “sandwich” method to
reflect what actually occurs for the data. As is the ML method, the GEE method is only
consistent under limiting model I, not under limiting model II, because in this situation
the number of parameters grows with K. GEE is a robust and relatively easy method to
apply and even yields consistent estimates if the working correlation is misspecified. It is
also widely implemented in almost all popular software packages.

3.3 Conditional Maximum Likelihood (CML) for the Subject-Specific
Approach

The analog subject-specific model to marginal model (4) is
logit (Wx”k) = aik—i—ﬂ;“b, wherei=1,...,n, k=1,.... K, x=1,...,c (8)

The {a;;} introduce a non-negative correlation marginally between items. This model

implies a common log odds ratio log \1!?;” = % = [oub B;“b = ;Zb, because this
z|ikTyl|i
expression is independent of i and k. In general, ﬂ;;b Py’ . The CML estimator is

dually consistent under the assumption of local independence (given {a;;}, Yizr and Yy
are independent). The estimator is also efficient for this situation. The method can be
applied to either fixed effects or random effects and does not depend on any assumption
of the random effects distribution.

3.4 Generalized Linear Mixed Model (GLMM) for the Subject-Specific
Approach

For model (8), assume oy, = o; + ag. We consider two GLMMs under the common odds

ratio assumption. The first (MM1) assumes that both «; and «j are random effects, i.e.

a; ~ N(0,02,) and o) ~ N(0,0%,,,,), whereas the second (MM2) assumes that the

{ag,k=1,..., K} are fixed effects. MM1 is dually consistent, but MM2 is not consistent

under limiting model II, since for this situation the number of parameters grows with K.
For MM2, we have the following relationship between ;Zb and G5y

0P ~_ sub
/Bgyp ~ 5‘7§ub ) ﬁxy



where 0,2 := (1 +720%) 712 ~ (14 0.350%)71/2 with v = 16v/3/(157) [20]. If 02, ~
0 (= 0,2 A 1), then the subject-specific effect ﬂ;gb and the marginal effect 5" are
approximately equal. Otherwise, if a?ub > 0, then 0,2 , < 1.

4 Heterogeneity of Odds Ratios

The assumption of a common odds ratio is crucial for the consistency of the various
estimators. However this assumption is not always fulfilled. A marginal model that allows
the heterogeneity of odds ratios across different strata has the form

logit(ﬂx|k) =ap+ Bk + 0, k=1,....K, x=1,...,c. 9)

Regardless of the constraint, the odds ratio in the kth stratum is log W, x = Bueyk + Buy =
(Bzk — Byk) + (Be — By). We can assume {31} as random effects, which is appropriate
under limiting model II. Possible assumptions of the distribution include B,x ~ N(0,02)
and By ~ U[—d,+d], denoted by model (N) and (U) respectively. Consider an extension
of the GLMMSs discussed in Subsection 3.4, the subject-specific models analog to model
(9) are referred to as models MM3 and MM4, which correspond to MM1 and MM2 but
with additional random effects {3,;}. The log odds ratio log ¥, = B,y = B, — By could
be considered as the average treatment effect, as in a meta-analysis.

The MH estimator does not converge to the average treatment effect because the
average treatment effect is not a linear function of ({my, * =1,...,¢}). A similar incon-
sistency argument on a non-linear transformation was also given by Cox [21] considering
a different situation where a random sample follows Poisson distributions with different
means. When the distribution is parameterized in terms of some non-linear function, the
transformation of the sample mean is not consistent anymore. The following theorem
shows the limit of the MH estimator under limiting model II when odds ratios vary across
strata. To be more general, the theorem is applied to the case where the correlation

between (1, and By, equals pgy (|pzy| < 1), for x £y € {1,...,c}.

Theorem 2 For limiting model II, the standard MH estimator Ly, (under conditional
independence or Wy, = 1) and the new MH estimator Ly, both converge approxzimately to
log W,y under model (U) for a small d < 1, and converge approzimately to 5g%y log ¥,
under model (N). The term 8,2 = (14~7%02)~ Y2 =~ (14-0.35-6%) /2 where v = 16y/3/(157)
and 02, = {07 4 0 — pry0a0y}/2.

There is a limitation of Theorem 2 due to the numerical approximation for the term
Eg,, expit(ax + Bzr + B). The approximation performs well when d < 1 for model (U)
and when o2 < 4 for model (N). The detailed proof is given in Appendix B.
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The theorem implies that the limit will either differ from log ¥,, approximately by
factor 0,2 <1 (the value 1 occurs when O'%y ~ 0) for model (N) and by factor 1 for model
(U) for a small d < 1. When log ¥,, = 0, the limit goes to zero for both random effect
models. If we are only interested in testing log ¥, = 0 against log ¥, # 0, it follows that
the MH estimator can also be used for testing the same hypothesis. The same applies to
any of the other marginal methods. The simulation study that follows investigates the

performance of the various methods under this heterogeneity situation.

5 Simulation Study

We conduct a simulation study to investigate the performance of the proposed log odds
ratio estimator I:xy and its variance estimator Uwyy. The proposed estimator I:xy is com-
pared with both the standard MH estimator L, and with those of all the other introduced
methods: GEE, ML, CML, MM1, MM2, MM3 and MM4. For the GEE method, we fit
the model using an exchangeable correlation structure, for the GLMM method we use
R-package 1me4 [22] that uses Laplace approximation to obtain ML estimates.

5.1 Homogeneity Assumption

To generate data, we first compute the marginal probabilities from given parameters ay
and [, according to marginal model (4) under the common odds ratio assumption (ho-
mogeneity). Parameters «j were generated from N(0,1). We let 3, = log ¥,,/2 and
By = —log W,y /2. Thus, By = log ¥,y

We consider pairwise associations among ¢ items using the odds ratio ',y

11 00
ﬂ-zy|kﬂ-xy\k

r

zylk = 01 10
7T:):y|k7rxy\k
From the marginal probabilities {7,z = 1,..., c} and the association parameters {I'y,x, T #
y = 1,...,c}, we can compute the pairwise probabilities {ﬂi’;‘k,x £y=1,...,¢ st =

0,1} [23]. For simplicity, we let ¢ = 2 allowing a simple sampling from the pairwise distri-
bution (for ¢ = 2 this is equal to the joint distribution) and assume a constant association
parameter I' = I'jp;, for all strata k = 1,..., K. We use S = 1, 2, 3 to represent the
sampling method I' = 0.01, 1.00, 10.00, respectively. The stratum sample sizes ny, are set
constant with values 5, 20, 100. The odds ratio ¥ (= W;2) takes values 1 and 4. The
number of strata K varies from 5 to 100. In the simulation study, the scenarios range
from ones for which limiting model I seems suitable to ones for which limiting model 11
seems appropriate. The number of simulations is 5000 for K = 100 and 10000 otherwise,
adjusting for the computational burden of the particular configuration.

11



Table 2 summarizes the mean squared error (mse) relative to the best method, with
the first column showing the values of K, n; , ¥ and S. The lowest value is 1.00 which
indicates that the particular method has the lowest mse among the introduced methods.
For instance, a relative mse (rmse) of 1.20 indicates that the particular method’s mse
is 1.20 times larger than the mse of the best method for this configuration. There are
two additional numbers in superscript and subscript. In superscript, the percentage of
simulations for which the method did not converge is shown. If this number is “0”, then
the method converged for all generated data sets, whereas the percentage 0.0 indicates that
the method did not converge for up to 4 of the 10,000 (4/10000 = 0.04 ~ 0.0) simulations.
The number in subscript shows the contribution of bias? to the mse in percentage. For
example the value 20 indicates that bias? contributes to 20% of the method’s mse. There
is also a sign (either “+” or “—”) attached to this number, showing whether the bias is
positive or negative. The table also includes the rmse’s of the bootstrap samples mean
(from B = 1,000 replicates) for both L and L, denoted by Lpr and EBT, respectively.
The results of MM2 and MM4 are not shown, because they are generally worse than those
of MM1 and MMa3.

Table 3 shows the percentage of times (coverage) that the 95% confidence interval
covers the true parameter log W. The subscript shows again the percentage of simulations
for which the method did not converge. The table shows the results of the percentile
method, because the results of the other bootstrap methods are generally worse and are
not shown. The tables showing the rmse and the coverage use complex designs, but are
useful in preserving space and in summarizing multiple information in a single table.

We also want to point out a few issues when reading the tables and making interpre-
tations. Sometimes the relative mse might seem good or even be best for some method,
e.g. the ML method in Table 2 has a relative mse of 1.0 in a configuration, however the
percentage of non-convergence is 98%. For the same configuration the MH methods con-
verged for all simulated data sets. The mse’s are not comparable if their computation is
based on very different sets of simulations, but are still shown for completeness. Ideally,
we could compute the mse of all methods for which the ML method converged. However
this is also problematic, since then the results shown in the tables might only refer to a
very few simulations (sometimes to none at all) making any comparison meaningless.

When the marginal model holds, the estimator lgg\\ll obtained from any of the subject-
specific models (CML and MM1-4) can be quite different from the true population-
averaged parameter log U. In practice, the choice of models between marginal and subject-
specific is based on the nature of the research interest depending on the data. All of the
subject-specific models have a large rmse when the items are highly positively correlated
(S = 3), especially for the random effect models. This is not surprising because the dif-
ference between the population-averaged and the subject-specific log-odds ratios depends
on the variance of the subject random effects in a GLMM, see Subsection 3.4. When
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the items are highly correlated the variance is larger and consequently the difference is
bigger. Although the simulations are not based on a GLMM, intuition suggests that a
similar conclusion should hold for a GLMM that approximates the true distribution in the
Kullback-Leibler sense.

From Table 3, we can also find the impact of the negative association between responses
(S = 1) on the random effect models. When the null hypothesis is true (¥ = 1), the
coverage of the true parameter is less than 95% based on the 95% confidence interval. It
implies that we reject the null hypothesis more often than we should using the random
effect models. When the association between items is independent or positive (S = 2 or
S = 3), the coverage of the true parameter is closer to the 95%. Therefore unsurprisingly
the random effect models do not perform well when a non-negative association between
the pair of responses is questionable. In comparison, the proposed MH method (L ) has
coverage close to the 95% for all cases.

From the rmse results in Table 2, the new MH estimator is generally better for S = 3
than the standard MH estimator, except for independence of items (S = 2) and ¥ = 1, for
which the standard MH estimator is still dually consistent. The standard MH estimator
also seems better for S = 1: when there is a strong negative correlation between items
present. When we look at the construction of \ifxy and compare it to that of \i/, then
we see that the numerator and denominator of \ley contain an extra term n'0: Coylk =

Coylk — n,lgo/nk. A negative correlation of items (I' < 1), implies 71!17% < 719701 Hence

n,io and n01 will be also relatively large. This implies that ¢,z and ¢, are relatively

smaller (closer to zero) than c,,;, and Cyalk- Under I' < 1 there will be more strata with

zero contribution to the MH estimator ¥ than for ¥, which leads to more inaccuracy. The
new MH estimator is better than the standard one when a positive correlation presents
between items.

Table 3 shows a different picture. The new MH estimator is to be preferred over the
standard MH estimator for all sampling situations S = 1,2,3. Even though the standard
MH estimator has better performance according to the rmse table under S = 1, the
percentage of times that the 95% confidence interval covers the true parameter is much
smaller than 95%. It can be explained by the fact that the standard variance estimator
has worse performance than the new one. In summary, when the common odds ratio
assumption holds, we can see from Tables 2 and 3, that the method that is often good is
the new MH method.

5.2 Heterogeneity Assumption

We also generate data under model (9), for which the common odds ratio assumption

does not hold (heterogeneity). We require additional parameters o2, 05 and pg,. We
assume that B, = (Ouk, ﬁyk)T follows a bivariate normal with o2 = 05 =0.25 and p =

0.0,0.8. For the choice of 02 = 05 = 0.25, the generated (3., will be in the interval
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By £1.964/2 - 1/4 ~ B,y +1.385 when p = 0.0. Consequently, 95% of the generated W,
will lie in the interval (W, /4, 4-W,,). For example, when ¥ = 4 the interval is (1, 16) and
when ¥ =1 the interval is (1/4,4). For p = 0.8 the intervals will be smaller. In practice,
we would only apply the MH estimator for small/moderate deviations from the common
odds ratio assumption. For such a choice, the simulation study covers the cases from a
small to a large deviation.

Tables 4 and 5 show the relative mse and the coverage when the data was generated
under the heterogeneity assumption for p,, = 0.8. Since the results under p,, = 0 are
very similar to the case of p,, = 0.8, we only report one case. The MH method is now
relatively slightly worse compared to those in the homogeneity cases. We had shown that
under a sparse data situation the MH estimator does not converge to the true log odds
ratio ¥ for ¥ # 1, instead it is often underestimated. For the case of p,, = 0.8, it
converges to 0.975 - log ¥ based on Theorem 2. Table 4 confirms this, showing negative
biases for sparse data situations. The table also shows positive biases for the generalized
linear mixed models (GLMMs) indicating that subject-specific effects are larger than the
population-averaged ones. However, under S = 2 (independent responses), the GLMMs
are close to the marginal models.

From Table 5, the models MM3 and MM4 allowing heterogeneity among the odds
ratios have better performance than the models MM1 and MM2. However, similar to
the homogeneous case, the type I error is larger than the significance level when the
non-negative association assumption does not hold (S = 1).

Table 6 shows the proportion of simulations in which the null hypothesis ¥ = 1 was
rejected when the true W equals 2. Under limiting model I, the ML and GEE methods
give a higher power of the test compared to the MH methods in most of cases. When
data become sparse (K = 20, Ny = 5), even though the ML and GEE are still better,
most of the cases (from 35% to 97%) do not converge. The MH methods based on the
percentile bootstrap are not stable compared to the MH methods based on the derived
variance formulae. We do expect a bigger power for the GLMMs, because the type I error
is larger than the significance level (5%), as given by Tables 3 and 5. Similarly, since the
type I error for the standard MH estimator is also larger than the significance level when
S =1, its power becomes larger than the proposed MH method under this case. Based on
all simulated tables, we conclude that the proposed MH method performs well in various
situations.

6 Example: Merck Research Laboratories Data

For Table 1, we compare the odds of being positive towards the improvement from the
patients’ self evaluation with these from the investigators’ evaluation for each treatment.
Because the data are very sparse, it is not sensible to use MM2 (or MM4) by treating the
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clinical centers as fixed effects. In addition, the ML method fails to converge using Lang’s
algorithm [11]. Table 7 only reports the estimates from the standard MH, the new MH,
GEE, CML, MM1, and MM3 methods.

For treatment 1 (Placebo), the proposed MH log odds ratio is L = 0.621 with standard
error (s.e.) 0.323 based on formula (6). The bootstrap standard error gives a similar
result 0.346. The standard MH log odds ratio is L = 0.850 with standard error 0.444,
which are different from the proposed MH method. We expect a worse performance for
the standard MH estimator, because the standard MH estimator is not consistent under
limiting model II. We conclude that the estimated odds of being positive towards the
improvement from the patients’ self evaluation are exp(0.621)= 1.86 times higher than
those from the investigators’ evaluation in the placebo treatment. The odds ratio is
significantly different from 1 at the 10% level. Alternatively, the log odds ratio estimates
from the subject-specific methods for CML and MM1 are 1.705 (s.e. 0.768) and 2.698 (s.e.
0.897). Both of them are significant at the 5% level.

The patients’ self evaluation tends to be more optimistic when the treatments 1
(placebo) or 2 (low dose of active drug) were assigned. When the dose of active drug
is high (treatment 3 or 4), the difference between the patients’ self evaluation and the
investigators’ evaluation diminishes. For the subject-specific models, the pattern is the
same as for the MH method, but the subject-specific estimate is larger than the marginal
methods.

The last column in Table 7 presents the estimate for all treatments combined, that is,
the total number of strata equals 21 x 4 = 84. It gives an estimate of the mean effect
across all clinical centers and treatments, allowing for heterogeneity across strata. On
average, the patients’ self evaluation still tends to be more positive and the difference
between the patients’ self evaluation and the investigators’ evaluation is significant at the
5% level. In summary, the estimated odds of being positive towards the improvement
from the patients’ self evaluation are exp(0.400)= 1.49 times higher than those from the
investigators’ evaluation.

7 Discussion

In this paper we propose a new MH estimator for stratified dependent binomial data. It
has advantages over the GEE, ML, and standard MH estimators for sparse data, because
the new MH estimator is consistent under limiting model II whereas the other three are
not. When the data are not sparse, it performs as well as the GEE and ML estimators
based on our simulation study. Unlike the standard MH variance estimator, the proposed
dually consistent variance estimator also performs well, giving correct coverage of the
true parameter. Another advantage of our method is that, e.g. in a multi-center study,
the correlation between responses can be different for different centers or for treatments.
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Unlike traditional approaches, the new MH method does not assume equal correlations in
different strata.

The paper focuses on the marginal model, a population-averaged approach, but al-
ternative subject-specific estimators can be obtained using the CML or random effect
methods. In our view, both the population-averaged and subject-specific approaches have
their justification. The choice between these two depends on the nature of the study.
This paper points out the problems of using the subject-specific approach if a population-
averaged effect is indeed the main interest.

Assume that the subject nuisance parameter follows a normal distribution. The mag-
nitude of the difference between the population-averaged and the subject-specific effects
depends on the variance of the nuisance parameters. The difference increases as the vari-
ance increases (i.e., the association between responses increases). The subject-specific
effects are larger in absolute value (factor d,2), as discussed in Subsection 3.4. When the
responses do not have positive associations, which violates the structure of the GLMM,
the type I error becomes larger than the significance level. For the marginal model, the
population-averaged effect is independent of the magnitude of the correlation between
items. The negative association does not have any effect on the population-averaged esti-
mator.

This paper also discusses the performance of the new MH estimator when the common
odds ratio assumption does not hold. If the common odds ratio assumption is slightly
violated it is still a useful tool in obtaining a summarizing effect. However, when the
log odds ratios vary across strata, as in a meta-analysis situation, we show that the MH
estimator converges to the mean log odds ratio with a factor ¢ (< 1). The factor ¢ is <1
under limiting model II. The value of § depends on the variation of the log odds ratios
across strata. The larger the variation, the worse the MH estimator is. For instance, in
our simulation study the odds ratio varies from 1 to 16 when the true mean odds ratio
equals 4. The MH estimator under-estimates the true mean odds ratio when the data
are sparse, but in a small scale. For the above case, the MH estimator converges to
exp(0.96 - log 4) = 3.78 (instead of 4).

The new MH type estimator can be easily applied to any binary matched pairs data sit-
uation. For example let us focus on a multi-center cross-over study design with treatments
A and B and a stratification variable with K levels referring to the K clinical centers.
The standard approach considered by Gart [24] is based on the subject-specific approach.
Instead we can also apply the newly proposed MH estimator based on a marginal model
by first computing U 45 for the group that receives treatment A first, followed by treat-
ment B. Similarly we can compute U4 for the other group which received treatment B
first. The treatment effect for the cross-over study is computed by i(log Uap+log¥ps)
and the order effect by i(log U AB — log U BA)- Another application is a multi-center co-
hort study comparing two groups. The change for the control group between baseline
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and follow-up is captured by the odds ratio ¥ and that of the treatment group by Wr,
assuming a common odds ratio for the K medical centers. The treatment effect can now
be estimated by log(\i/T) — log(\ifc), which accounts for the dependence between baseline
and follow-up. This situation is similar to a matched-pairs situation for continuous data,
for which usually the one-sample t-test is applied. Another application of the proposed
estimators is a longitudinal study, in which the binary responses are collected over time.

This paper gives a simple method to compare binary matched pairs when the researcher
is interested in a population-averaged interpretation and when the data were highly strat-
ified by other factors. Another reason to opt for the population-averaged approach is
that the marginal effect is independent of the magnitude of the association between items.
In contrast the subject-specific effect increases with increasing positive correlation (fac-
tor 0,2 ~with a; ~ N (0,02,)). Medical practitioners often compare treatment effects
of several trials. When the treatment effects are based on mixed models with different
magnitude of correlation within subjects, then differences in the treatment effects might
be solely due to the difference in correlation, i.e. the difference in J,2, but not due to a
different marginal effect (odds ratio referring to marginal probabilities).

Our proposed MH estimator can be generalized along the lines of Mickey and Elashoff
[25] and Greenland [12]. The log odds ratio log ¥, cannot only be estimated by L, but
also by Ly + Ly.. This is because of the property ¥,. = ¥, ¥, .. There does not exist a
unique estimator, since generally L., # Ly, + L,.. The generalized estimator introduced
by Greenland [12]

log Uy := Lyy := (Ly+ — Lyt)/c.

is generally applicable to any estimator of log ¥, and also applicable for stratified de-
pendent binomial data. The generalized MH estimator has efficiency advantages over the
standard MH estimator. Greenland [12] also proposed a dually consistent covariance es-
timator for the covariance between f/xy and L, under the sampling models a) and b).
The formulae for such a covariance estimator for the proposed MH estimators is slightly
different and is presented in Appendix C along with a proof.

Suesse [26] defined the new MH estimator W slightly differently. The term Caylk I
this paper uses denominator nj, whereas Suesse [26] used denominator nj. Using nj has
the advantage that U is also automatically defined for ny = 1, whereas using nj, has
the advantage that then Ec,,, = ngm, Ty, (holds in general) is identical to Ecyy, =
N T4 |kTy|ks 1.€. standard and new MH estimator share the same property, provided the
underlying assumptions are fulfilled.

Unfortunately we cannot use the new MH estimator when we condition on each subject
i, because then ng = 1 and the contribution of each subject to the MH estimator is zero
(Czyk = 0), making the new MH estimator undefined in this case. This is in contrast to
the standard MH estimator (assuming conditional independence) which is still defined in
this instance.
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The variance estimator ﬁxyy can be improved in estimating the variance of L, even
though the coverage of the Wald-type confidence interval is good. Future research aims at
finding a more efficient variance estimator replacing Umyy as well as covariance estimators
that go along with the asymptotic covariances yet to be derived. Then the generalized
(co)variance estimators can also be constructed by using these more efficient estimators.
It needs to be investigated whether deriving covariance estimators is feasible or not.

Following the discussion of effects of misclassification in matched-pair case-control
studies given by Greenland [27], the proposed method along with any other considered
method here, can be sensitive to bias from misclassification. Future research also aims to
address the effect of misclassification on the newly proposed MH estimator.
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Table 1: Patients’ Self Evaluation and Investigators’ Evaluation on the Patients Change
in Condition: number of bivariate binary observations for improvement

Center 1 2 3 4 5 6 7

Treatments 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
nV0 4,1,2,0 2,1,2,2 4,1,1,3 1,2,2,1 2,1,2,0 0,0,0,0 1,3,1,2
not 0,0,1,1 1,0,0,0 0,0,0,0 0,0,0,0 0,0,0,1 0,0,0,0 0,0,0,1
nto 0,2,0,1 0,1,1,1 1,3,0,0 1,2,2,1 0,0,0,1 2,0,0,1 2,1,2,0
ntl 0,1,1,1 0,0,0,0 1,0,0,2 0,2,2,0 1,1,1,3 0,2,1,1 0,0,0,2
Center 8 9 10 11 12 13 14

Treatments 1,2,34 1,2,34 1,2,3.4 1,2,3.4 1,2,34 1,2,3,4 1,2,3.4
n00 2,1,0,2 1,3,2,0 1,2,0,1 2,1,1,1 0,0,0,1 4,3,1,2 1,2,1,3
not 0,0,1,1 0,0,0,0 0,0,0,0 0,0,0,1 0,0,0,1 0,0,0,1 0,0,0,0
nto 0,0,0,0 0,0,0,0 0,0,0,0 1,0,1,0 0,0,0,1 1,0,0,0 0,1,0,1
ntl 0,1,2,0 0,0,1,1 1,2,1,1 0,1,1,0 2,1,2,0 0,1,1,0 0,2,1,1
Center 15 16 17 18 19 20 21

Treatments 1,2,3.4 1,2,34 1,2,3.4 1,2,3.4 1,2,34 1,2,3,4 1,2,3.4
n00 1,5,3,1 2,2.2.0 4,0,3,2 4,1,0,1 1,0,3,3 1,2,3,1 0,3,1,1
not 0,0,0,0 0,1,0,0 0,0,0,0 1,0,0,0 0,0,0,0 0,0,0,1 0,1,0,0
nto 2,0,0,0 0,1,0,0 0,0,0,2 0,1,0,0 1,0,0,0 0,1,0,0 0,0,0,0
ntl 1,0,2,1 2,1,3,4 1,1,2,0 0,2,1,1 1,3,1,2 1,0,1,0 1,0,2,2
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Table 7: Merck Data: The estimates from the standard MH L (1st row), the new MH L
(2nd row), GEE (3rd row), CML (4th row), MM1 (5th row), and MM3 (6th row) methods
along with their standard errors in parentheses

Treatment
Methods 1 2 3 4 Combined
standard MH L | 0.850 (0.444) | 0.890 (0.412) | 0.296 (0.385) | 0.072 (0.379) | 0.419 (0.184)
New MH L 0.621 (0.323) | 0.856 (0.316) | 0.260 (0.180) | 0.000 (0.336) | 0.400 (0.114)
GEE NA NA NA NA | 0.428 (0.123)
CML 1.705 (0.768) | 0.872 (0.760) | 1.099 (0.816) | 0.118 (0.486) | 1.025 (0.311)
MM1 2.698 (0.897) | 1.479 (0.514) | 0.716 (0.610) | 0.107 (0.416) | 0.857 (0.251)
MM3 NA | 1.500 (0.534) | 0.716 (0.610) | 0.108 (0.417) | 0.859 (0.260)

A  Appendix

A.1 Non-dual Consistency of \ifzyy

Under the Sparse-Data Limiting Model (Limiting Model II) we can write

Cry — Yy Cys _ Zszl Caylk — YayCyalk
Cya 25:1 Cyzlk
(ZkK:I Caylk — VayCyap) /K (Coy — Wiy Cya) /| K
Sicicen/K Cw/K
_ Zé{:l Wayle/ K Quy/ K
N Zszl Cyali/ I - Cp/K

U, — Uy, =

Yy

With Wy = Coyle — VYayCyee and Q@ =), wy.

The term ¢, is a bounded random variable under limiting model II, hence the vari-
ance of Cyy is o(K?) and Chebyshev’s weak law of large numbers (CWLLN) implies
% (Qay — EQqy) —50.

We assume ni = (ngg‘ & ng; o n;& o nﬁ/' ;) follows a multinomial distribution with pa-
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rameters ny and my = ( It follows:

00 01 10 11
7sz|k’ 71-33y|k’ 7Tmy|k:’ Trmy\k)'
_ 10 11 01 11 _ / 11
IEnw|kny|k - E(nzy\k + nxy|k>(n:py|k + nmy\k) - nk[nkﬂ—ﬂkﬂ—y‘k + Trzy‘k]
with nj =ny — 1.

Therefore,

1 1
Ec = —FEn i, = —Eng(ng —n = — (npEn, i — Engn
zylk ng z|kTly|k ng ac|k( y|k) ng ( z|k z|k y\k)

= nlk (nzﬂﬂk N [nkwx‘kﬂy‘k + WWV“D

= NETg|k — MkTo|kTylk + Ta|kTylk — Wal:;\k
= Tk Tyl + (T Tyl — F;;;m)

We conclude

EQuy = E(Cpy — YCyz)

_ 11 - 11
= Tk Tyl + (ol Tyl — Togie) — Yoy | 6Ty Talk + (TykTalk — Toyik)
Yl Yl
k

_ _ 11
=> {nwmkﬂy\k = Tk Ty ke + (T Ty ke — Tgye) (1 — ‘I’my)}
s

= (1= WUyy) Z(Wmlkﬂy\k - W;;Ak)'

k

Therefore %sz converges to a non-zero constant, i.e. limg_ oo %Eﬁxy, unless items are
independent or ¥,, = 1. Since ¥,, — ¥,, does not converge to 0 in probability, ¥, is
not consistent for the general case of b).

Under Large-Stratum Limiting Model (Limiting Model I), let N = 37, nj, and ¥ —
ap >0 as N — oo. Then,

K - ng Nzl Mylk
f[] _Zk:l nx\kny\k/nk Zk nanw\kny\k Zk N np nyg
Y T <K _ |k Na|k
Zk—l ny|knx\k/nk Zk nE N Ty |k M|k Zkz Wk rsz n;L

Nooo 2ok MalkTylk o Dok CkTylkTalk

—
Ty — Y
Y QT Tk 2k QT kTl

by 7,7, = W, Ty, that is, the consistency holds under limiting model I. The ordinary
MH estimator is not only dually consistent under independence of items, but also when
V,, = 1 and even when items are dependent.
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A.2 Dual Consistency of ‘ilxy

Sparse-Data Limiting Model (Limiting Model II):
As before, we can write
(Zk 1 $y\k: fliyéyz\k)/K _ (éxy - \Ijmyéym)/K
Zk:l yrlk/K ny/K
K - ~
_ (Zk:l wxy|k‘)/K sz/K

S e/ KE Cu/K (10)

With @ik = oyl — PayCyelr and Q = 3, &p. We have

U,y — U,y =

ECyy ik = E(ngpiyx — nyyp)/mk = ;k (E"x|k(”k = yjk) = E"my\k)
= Tjk (nkEnx‘k — Engpnyk — Enxy‘k)
= nlk (n%ﬂ'mlk — (nkﬂx|k7ry|k + 7T9cy|k) nkﬂ'zylk)
= nlk (nknk(mk — TolTyik) + (Tl — Toyp — Wi2|k))

o _ ng W _
= Np Tk Ty, + nfk(ﬁxm - 7rgc|l~c) = N T |k Ty|ks

hence, EQW = E(éxy — \I/xyéyx) = 0. This results holds also for the special case of
independence between items. We apply Chebyshev’s weak law of large numbers and find

K K
= ~ K—o0 . ~ . =
Cry/K = kzl Eayn/ K 550, KIEnOOZ:IE(cwyW) /K = lim ECqy/K. (11)
It follows from equation (10) and by applying Chebyshev’s weak law of large numbers to
the numerator together with EQZy = 0 and equation (11), that the new estimator \Ilzy is
consistent under limiting model II, in contrast to \ley
Large-Stratum Limiting Model (Limiting Model I):

k=1
K — 10
. ni Ny |k My|k N nmy\k
P nkN ne nNg nkN ng
K
N—»oo
E O‘kﬂ-x\kzﬂ-mk 0- ﬂ-xy|k_ E Oék7'('$|k7ry|k.
k=1 k=1
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Now

- limy EC,, /N limy EC, /N
lim @, — v ECy/N_, MmyEC. /N
N—oo limy ECy, /N limy ECy, /N

Thus, \ilxy is indeed dually consistent.

A.3 Dual Consistency of nyy
For the sparse-data limiting model, we obtain the following asymptotic variance:

. 1 .
lim K - Var®(Lgy) = 77 lim K - Var®(V,,)

K—o0 2, K—oo
1 limg oo K - Var®(Qy, /K)
U2y [limpy oo Yo g Eéyip/ K]
 limgeo 30y Var(@gy ) /K

- , 12
[th—>oo Zszl Eéccy\k:/KP ( )

where

Var(d)xy‘k) = Var(¢py — Véyz)
= E(éxy - \I’éyz)2 - [E(éxy - \I'éyx)]Q = E(éaﬁy - \I'éyx)2
= K&, + VEe,, — 2UECy, iy,
1 % 10 \2 2 _ 10 \2
= nii{E(Xﬂkak - Xzy|k) + v E(Xy\kXﬂk - Xyac|k)
v 10 v 0
— 2UE (X, Xy — Xy ) Xy n Xap — X))
For convenience, we suppress subscript k& and write Xz := X ;Z| i for s, t € {0, 1}.
1 _ _ _ _
— ?{(Exng +EXG) — 2EX, X, X10) + U (EX, X7 + EX§, — 2EX, X, Xo1)
k
—2U(EX, X, X, X, — EX, X, Xo1 — EX, X, X10 + EX10X01)}
1 _ _ _ _
= n—z{EXngQ +EX3) — 2EX, X, X10 + V’EX; X7 + U’EXj, — 20°EX, X, Xo1
—2UEX, X, X, X, + 2UEX, X, Xo1 + 2VEX, X, X109 — 2PEX 0 X0 }. (13)

We define N3 := nn/n/'n'", Ny := nn'n", Ny :=nn’, Ny :=nwithn' =n—1,n" =n—-2
and n’/ = n — 3. Using the moment generating function of the multinomial distribution
(n, (p1, p2, p3, -..)), we can derive the following higher order moments (indices i, j and k
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refer to different outcomes of the multinomial distribution):

EX; = Nop;
EX? = Nip? + np;
EX;X; = Nipip;
EX? = Nop? 4 3N1p? + Nop;
EX?X; = Nop?p; + Nipipj
EX,; X; X}, = Nopipjpi
EX;' = Nsp; + 6Nop + TN1p} + Nop;
EX} X; = Nap}p; + 3Nopip; + Nipip;
EX7X? = Nsp;p; + Na(pip; + pip3) + Nipip;
EX?X; Xy = N3pZp;pr + Nopip;pr
EX;X,; Xy X; = N3pipjprpi- (14)

For convenience, define X 4 := Xq9, Xp := X1, X¢ := X11, Xp := X to avoid confusion
with the indices s,t € {0, 1}, similarly for the 7y’s. Now we write n? and n as

n=n"n" +50" +4=nn"+30"+1=nn"+n

n=n"+3=n"+2=n"+1,

hence,
n?N; = n?n’ = N3 + 5N, 4+ 4N, nNy = n’n'n” = N3 + 3N,
n2N0:n3:N2+3N1+N0 nNy = n’n’ = Ny + 2N,
n2:N1—|—N0 nN0:n2:N1+N0. (15)

with No = n, Ny = nn/, No = nn/n” and N3 = nn'n"n"’. Let(-)|n, denote the terms of (-)

with factor N;, for example EX?X;|n, = p}p;. By applying (15) with (14), we can derive
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the following higher moments as shown by Suesse [26]:
EX?% = Ni74 4+ Noma
EX% = Nyn% + Nomp
EX2Xp = Nimamp
EX, X, X4 = NomyToyma + N1{27T124 + 74 —mamp} + Noma
IEXmeXB = Nom,mymg + N1maTpB
EXnyXB = NomyT,7B + N1{27Tj23 +7p —mpma} + Nomp
EX, Xy X4 = NomyT,ma + N1TRTA
EX2X2|y, = n27
EX2X2|n, = maty(1 — 75 + 57ma)
IEX%XS\NI = Ty + 4% + 21y — 2mATR
EX2X2|N, =74
EX; X2\ Ny = moms
EX,X2|N, = myfia(1 — w4 + 573)
EX X2|N, = myTty + AT} + 21 — 2maATR
EX;X2|n, =75
EX, Xy X, Xy Ny = TumyTaTty
2 x EX, X, X Xy|ny = (mafy + myTe)(2ma + 275 + 1) — 2(ma — m5)* — (74 + 7B)
EXszXme\Nl = Ty — TA = TyTTy — TR
EXnyXny\NO =0. (16)

Finally we are able to compute (13) by using (16).
. N.
Var(wxy|k) = H—QQ\IJ{(WA +7p) — (74 — 7rB)2}

N
+ 7,721{77124 + ‘11277% + V(g + 7+ 2maTB)}-

The sparse data limiting variance is obtained by inserting Var(w,,;) into equation (12).
For the large-stratum limiting model, we obtain the following asymptotic variance:

= limpy_, Var®(@ N
lim V- Vart(E,,) = LN oo 2ok VAr (@) /N
N—oo My oo Dy Ecccy\k:/N]z
By the delta method, the large-stratum limiting variance is

1 = = f
lim N %:V&Ta(wxy) = zk: A T T + Ty Ty + 2(memy — TO) )
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Now we can show that the estimator ﬁazyy converges under both limiting situations to the
corresponding asymptotic variance.

B Appendix

Let B, := (Bzk, ﬁyk)T be the vector of random effects and Fj, the distribution of 3; with

02 poyoy
pPOL0y 032/
First, we re-express the model

covariance X = < and mean 0.

logit(ﬂﬂk) = ag + ek + Be
logit(my k) = ax + By + By

for any two items as

logit(m, ) = g + Bok + Ba
logit(ﬂ-y\k) = dk + ﬁyk + ﬁy

with ag = ag — M Buk — NoByk, Buk = (M1 + 1) Bk + Aafyr and Byr, = M Bur + (A2 + 1) By
The two models are identical and imply the same probabilities 7., and 7, the same

Beyk = Bak — Byk = Bk — Byk: and 3,y = B, — By due to unchanged 3, and 3,. The random
effect distribution of B, also has mean 0 but covariance 3 # 3. The elements of 3 are
denoted by 5’%, 65 and pg,0,0,. We choose A1 and Ay to have 6, = ¢, and p,y = 0. The
solutions of this problem for A\; are

_03:05(1 + Pay) £ (02 = payoaoy) 02051+ pay)

2

A=
and the corresponding solutions for Ao are

_072505(1 + Pay) £ (05 = Pay0a0y)y /0305 (1+ pay)

)\2: 9 )

which imply a variance of 62 = 67 = {02 4 02 — 2pay040y}/2 = Var(Box — Byr) /2.

Without the loss of generality, assume o2 = 05 and pgy = 0.

In Section A of the Appendix, we have shown the in- and consistency of the MH
estimators L and L under limiting model II. In this situation, the ordinary MH estimator
v converges to

S limg o0 D g Ecpy/ K
th—>oo Zk Ecyx\k/K

(17)
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and the new MH estimator ¥ to a similar expression U only replacing Coylk With Cpyg-

The reason why ¥ is inconsistent is that Ecyyi o< T pTyx does NOT hold under
arbitrary dependence between items given k, but Ec,yr o< 7,7y, holds, which ensures
the consistency of ¥ under the common odds ratio assumption.

Since we introduced additional random effects (3,1 to account for heterogeneity, we
also have to compute E B, ™l kTy|k i order to obtain an expression for Ec,, |, and Ec,, . .

From 7, = 1 — 7y, it follows that Cov(my, Tyx) = Cov(Tak, Ty k) = Cov(mak, Ty|k)-
Therefore

Eru Tyt = Cov(Taip, Tyk) + Emp BTy k-

Under model (N), we can use the numerical approximation Eg,, 7, ~ expit{d,2 (ay +
B2)} with 6,2 = (1 +726%)" Y2 =~ (14 0.35-02)"/2 and v = 16v/3/(157) [20] The term
Covﬁk (Ta|k> Ty|r) is zero under model (N), because p = 0 implies independence between

ﬁxk and ﬁyk-
Under model (U),

1+ exp(ay + Be +d)>

1
E =1
Bk M|k 2d 08 (1 + exp(ag + e — d)

which is approximately ﬂgl p = expit(ag + Bz + Bek)|g,p=0- Figure 2 shows the quality of
this approximation. We only need to be cautious if we apply the above transformation of
random effects under model (U) (if d; # da or p # 0) because the difference of two inde-
pendent uniform distributions U[—d1, d1] and U[—dz, d2] follows a triangular distribution.
However this distribution has less heavy tails than the uniform distribution. Hence we
expect that the approximation for such a random effects distribution is even better.

Now we need to compute COVI@k (/> Ty|ie) for model (U), as pry = 0 does not imply
independence between (3, and (3,,. We apply a first order Taylor series expansion around
B = 0 of function g(B;,) := (expit(ax + Bz + Buk), expit(ay + By + Byr))T and obtain

Cov (9(B)) = Cov {g(0) + G(0) - By} = G(0) - Cov(By) - G(0)
= G(0)- % G(0)

. 0 . . _ _
with G := %:) that yields G(0) = Dlag(ﬂ'glkﬂ'glk,ﬂg'kﬂg‘k). It follows

Cov(wx|k,7ry|k) s PUnyngﬁgmﬂgmﬁg\k'
Hence Cov(myi, my 1) = 0 for p = 0.
Plugging this into formula (17) yields
N lImpg oo Y p wg‘kﬁg‘k/(nkf()

lmg_ oo Zk Wg\kﬁ[x)\k/(nkK)

= exp{dp2 (B — By)}
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because exp(d,2(8z — By)) = M (a different common odds ratio). We conclude
|k z|k

log U = 6,2(08: — ﬁy) = 0,2 - log ¥, which was stated in Theorem 2 except o2 has
been replaced by {02 + a — 2pxyaxay} /2 due to the transformation.

The numerical appr0x1mat10n for model (N) is based on the result Eg , expit(c, +
Bek + Bz) =~ expit{dy2(ay + ()} derived by Zeger et al. [20]. Under model (U) we
use the approximation Eg , expit(ay + Bor + B2) ~ expit(a, + B). The quality of this
approximation can be seen in Figure 2. For d < 1 the approximation is very good, but for
d > 3 it becomes inaccurate.

This is similar to Figure 2 in [20] where the normal distribution for which the approxi-
mation is inaccurate when o2 > 4. This indicates that a similar approximation might also
apply to model (U): Eg,, expit(ay + Bur + Bz) ~ expit{dy2(az + B;)} but with 5y defined
differently.

C Appendix

The formula for the generalized covariance estimator is

—_— = = 1 ~ ~ ~ ~
COV(ny7 Ly.) = C*Q{Ua:—'—w - U:j_z - Ugj—w + U;,_z} (18)
with R
U+ _ B UJJ:FJ: — Uz4++ — Zhl zhi y L =1Y (19)
w U+ U+xy U:):er Uy:t+ + U;tyy + U:y y L 7é ) ’

where Uz, =", ;. distinet Uzhyi for © # y, otherwise Uz, = 0.
A sketch of this proof is provided here. Subscript “4” denotes summation over that
subscript. First we derive

Cov(Lyy, L) = Cov( 1/CZL:ch_ yh,l/cZLm— i)

1 - - -
=5 ) + Cov(Lys, Lai) — Cov(Las, Lui) — Cov(Lys, Lwi)}

LCor
{Cov(Lun, Lui) + Cov(Lyn, Lui) = Cov(Lun, L) = Cov(Lyn, Lui) }

2
gt
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and express ), 2i Cov(f/mh, sz‘) as

> Cov(Lon, Luwi) = Y Cov(Lan,Lua) + D> Cov(Law, Lui)
hi h i

(1 =) (h=w)
— Cov(Lgw, L) + Z Cov(Lah, Lu)

distinct indices x,h,w,i

= — Z COV(I:IU;, I:m) — Z COV(Ewma I:wz)

+ COV(Emw, Z}xw) + Z COV(Ea:ha -Z/wz)

distinct indices x,h,w,i

These two formulae together provide the basis for equations (18) and (19). For more
details of the proof, refer to Suesse [26].

The formulae are identical to Greenland’s except formula (19), which contains an
additional term Ug,, because now generally Cov(ﬂxy,f/wy) # 0. Greenland sampling
models a) and b) imply Cov(Lyy, Lyy) = 0. When comparing Greenland’s formula with
(19), we see that equation (19) has an additional term Sy for @ # y, because generally

Cov(izy,Lwy) # 0. We propose to use the bootstrap estimates of covariance Uy, , and

z
U;ywz Uzy. and Ugyyz, because we are not able to give formulae for the estimators Us,.

for Cov(f/xy, IN/m) and nywz for Cov(f/xy, ﬂwz).
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