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Summary

An aggregate series is a time series resulting from the aggregation of two or more

sub-series. This paper compares a model-based univariate and multivariate approach

to seasonal adjustment of the aggregate series for different series lengths. A simulation

study compares two outcomes: the accuracy of the estimated parameters of the aggregate

series, and the näıve bias in the prediction error variance.

The results show that for the two examples studied, the use of the multivariate ap-

proach in the estimation of parameters improves the accuracy of the parameter estimates

of the aggregated series. This was especially the case for short to medium length time

series. The relative efficiencies of the seasonally adjusted aggregated series also showed

good gains for the multivariate model. For one of the examples, there was a substantial

decrease in the näıve bias with the use of the multivariate model.
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1. Introduction

Seasonal adjustment may be performed by filter-based methods or model-based meth-

ods. For a time series resulting from the aggregation of two or more sub-series, the ad-

justment can be made on the aggregate series directly, or it can be done indirectly using

the sub-series. Although each of the sub-series is utilised in the indirect approach, each

series is seasonally adjusted individually rather than jointly. A multivariate approach to

seasonal adjustment is an alternative to both the direct and indirect methods. Limited

research has been done in this area (see Geweke, 1978; Ghysels, 1997; Planas & Cam-

polongo, 2001). Other studies including Harvey & Durbin (1986), and Harvey & Chung

(2000), have shown that the multivariate basic structural model has been effectively used

to achieve gains in the estimation of the components of a target series. The focus of this

paper is the joint modelling of sub-series for the purpose of seasonal adjustment of their

aggregated series.

A model-based univariate approach is compared with a multivariate approach to sea-

sonal adjustment of an aggregate series for different series lengths. A univariate basic

structural model (BSM) is applied directly to the aggregate series and a multivariate

BSM is applied to a transformed system of sub-series. When the model parameters are

unknown and are estimated from the data, the procedure of calculating the accuracy of

the seasonally adjusted series becomes two-staged. The results of these two stages are

studied in this paper.

In the first stage, the parameters of the aggregate series are estimated using maximum

likelihood estimation. When considering the variance of the seasonally adjusted series

the prediction mean squared error (PMSE) of the seasonal component is required. In the

second stage, the estimated parameters are substituted into the state space model and

using the Kalman filter, an estimate of the PMSE is obtained. This substitution is known

to produce an underestimate of the true PMSE in univariate models. The bias is often
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referred to as the ‘näıve bias’ and results from not accounting for the variability resulting

from the estimation of the model parameters (Durbin & Koopman, 2001; Quenneville

& Singh, 2000; and Pfeffermann & Tiller, 2005). A simulation study compares the

outcomes of both stages of the univariate approach with the multivariate approach for

series of lengths T = 20, 24, 28, 40, 80, 120, 240.

The BSM for the univariate and multivariate approaches are given in Section 2. The

simulation study and the estimation of parameters is described in Section 3. The results

are presented in Sections 4 and 5 with conclusions in Section 6.

2. Basic structural model (BSM)

2.1 Univariate BSM

For a single additive time series, the observations at time t denoted by Yt, may be

written as the sum of a local linear trend, Lt, a dummy seasonal component, St, and

an irregular or disturbance term, εU, t. The univariate model adopted for the aggregate

series is a local level seasonal model. For t = 1, . . . , T , it is written as

Yt = Lt + St + εU, t, εU, t ∼ N(0, σ2
U, ε) (1)

Lt+1 = Lt + ηU, t, ηU, t ∼ N(0, σ2
U, η) (2)

St+1 = −
s−1∑
j=1

St+1−j + ωU, t ωU, t ∼ N(0, σ2
U, ω). (3)

The disturbance terms ηU, t, ωU, t and εU, t, are assumed to be serially and mutually

independent, and their respective variances, {σ2
U, η, σ2

U, ω, σ2
U, ε} are the parameters of

the univariate model.



4

2.2 Multivariate BSM

For a multivariate BSM, the disturbance terms are decomposed into common effects,

which are time specific, and time-unit specific effects (Marshall, 1992). The local level

seasonal model for the observation for series k at time t, denoted by Ykt, is given below

with k = 1, 2, · · · , K representing the K sub-series with dummy seasonal components.

Ykt = Lkt + Skt + εt + ε∗kt, εt ∼ N(0, σ2
ε), ε∗kt ∼ N(0, σ2

kε∗),

Lk, t+1 = Lkt + ηt + η∗kt, ηt ∼ N(0, σ2
η), η∗kt ∼ N(0, σ2

kη∗),

Sk, t+1 = −
s−1∑
j=1

Sk, t+1−j + ωt + ω∗kt, ωt ∼ N(0, σ2
ω), ω∗kt ∼ N(0, σ2

kω∗).

(4)

The disturbance terms, εt, ε∗kt, ηt, η∗kt, ωt, ω∗kt are assumed to be mutually independent

Normal random variables. The common effects are ηt, ωt, εt and the time-unit specific

effects are ε∗kt, η∗kt, ω∗kt.

The aggregate series is given by:

Ytot, t =
K∑

k=1

Ykt = Ltot, t + Stot, t + εtot, t, εtot,t ∼ N(0, σ2
tot,ε),

Ltot, t+1 = Ltot, t + ηtot, t, ηtot,t ∼ N(0, σ2
tot,η),

Stot, t+1 = −
s−1∑
j=1

Stot, t+1−j + ωtot, t, ωtot,t ∼ N(0, σ2
tot,ω).

3. Simulation Experiment

To investigate the behaviour of the univariate and multivariate models for varying

series lengths, a simulation experiment is carried out. Data is simulated for two sub-

series and aggregated to obtain the total series for lengths, T = 20, 24, 28, 40, 80, 120,
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240. For quarterly data, this corresponds to series of length 5, 6, 7, 10, 20, 30 and 60

years. Time series of length 5 to 7 years are often considered as short series, 10 to 20

years are considered moderate length series and 30 or more years are long length.

3.1 Generation of Data Series

The parameters for the aggregate series are set to

σ2
U, η = 0.5, σ2

U, ω = 1.0, σ2
U, ε = 1.0.

In a previous study by Birrell et al. (2010) it was shown that the parameter values of

the aggregate series did not have a great effect on the results that were produced. The

seasonal to non-seasonal ratio for this series is σ2
tot,ω/(σ2

tot,η + σ2
tot,ε) = 1/1.5 = 0.67.

The parameters of the aggregate series may be written in terms of the sub-series

parameters. Given K = 2, the following relationships hold:

σ2
tot,η = 4σ2

η + σ2
1η∗ + σ2

2η∗ , σ2
tot,ω = 4σ2

ω + σ2
1ω∗ + σ2

2ω∗ , σ2
tot,ε = 4σ2

ε + σ2
1ε∗ + σ2

2ε∗ (5)

Note that given the true parameters, the following equalities will hold: σ2
U, η = σ2

tot,η,

σU, ω = σ2
tot,ω and σ2

U, ε = σ2
tot,ε. When parameters are estimated however, these equalities

may not necessarily hold due to estimation using the two different approaches.

To study the effect of the relationship of parameters between series, a measure of the

between series similarity of the stochastic properties for each component is defined. Let

the c-ratio for the level component (cη) be defined as follows and similarly for the seasonal

and error components:

cη =
Var(L1,t+1 − L1t)

Var(L2,t+1 − L2t)
=

σ2
η + σ2

1η∗

σ2
η + σ2

2η∗
, cω =

σ2
ω + σ2

1ω∗

σ2
ω + σ2

2ω∗
, cε =

σ2
ε + σ2

1ε∗

σ2
ε + σ2

2ε∗
.
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In a previous study by Birrell et al. (2010), the accuracy of the seasonally adjusted

aggregate series given the true parameters were studied for different combinations of cη,

cω and cε. In this study, two of these combinations which were shown to produce different

results have been chosen in order to investigate the effect of the estimated parameters.

They will be named Set 1 and Set 2. These two sets have different c-ratios but the same

correlations:

Set 1 : cω = 1, cη = 20, cε = 20, ρω = 0.1, ρη = 0.2, ρε = 0.2;

Set 2 : cω = 10, cη = 0.1, cε = 0.1, ρω = 0.1, ρη = 0.2, ρε = 0.2.

Given the values of the c-ratios, the correlation coefficient for each component and

the series parameters for the aggregate series, the multivariate seasonal parameters may

be calculated. Solved in terms of σ2
tot,ω, cω and ρω, the seasonal parameters are

σ2
ω =

ρω
√

cωσ2
tot,ω

1 + cω + 2ρω
√

cω

, σ2
1ω∗ =

σ2
tot,ω(cω − ρω

√
cω)

1 + cω + 2ρω
√

cω

, σ2
2ω∗ =

σ2
tot,ω(1− ρω

√
cω)

1 + cω + 2ρω
√

cω

.

Since σ2
1ω∗ ≥ 0, σ2

2ω∗ ≥ 0 and σ2
ω > 0, the restrictions on the correlations are such that

if cω ≥ 1, then 0 < ρω ≤ 1/
√

cω, and if cω < 1, then 0 < ρω ≤ √
cω. Similar constraints

apply to the level and error components. The multivariate parameter values are given in

Table 1.



7

TABLE 1 ABOUT HERE

The data for each sub-series are generated from the model equations given by (4)

using the model parameters in Table 1. The total series is then obtained by contempora-

neously aggregating the two sub-series. This procedure is repeated to produce the 1000

realisations of each sub-series and their aggregate.

3.2 Estimation of Parameters

The univariate and multivariate BSMs may be written more concisely in state space

form (SSF) and then analysis is carried out with the Kalman filter. Details are given in

the Appendix. For more general discussion of state space models and the Kalman filter

refer to Kalman (1960), Harvey(1989), and Durbin & Koopman (2001).

3.2.1 Univariate Model

For the univariate local level seasonal model given in (1) - (3), let the vector of the

three parameters be ψ(U) = (σ2
U, η, σ2

U, ω, σ2
U, ε)

>.

It is possible to reduce the dimension of the parameter vector and thereby reduce the

dimensionality of the numerical search by concentrating out one parameter (denote by

σ2
c ) from the log-likelihood function. This can also improve the numerical stability of the

optimisation (see Zivot & Wang, 2006, p558 and Harvey, 1989, p183). The measurement

error variance parameter, σ2
U, ε is chosen as the concentrated parameter, and a square root

transformation is applied to ensure that the estimated model parameters are positive. The

maximisation is therefore performed with respect to ψ
(U)
c =

(√
qU, η,

√
qU, ω

)′
. Thus, qU, η
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and qU, ω are the signal-to-noise ratios for the level and seasonal components respectively

and are defined as qU, η = σ2
U, η/σ

2
U, ε and qU, ω = σ2

U, ω/σ2
U, ε. The details of the state

space form for the univariate model is given in the Appendix. Referring to (15) in the

Appendix, Q = Var (ηU, t, ωU, t)
> and if σ2

U, ε is the concentrated parameter, then Q can

be rewritten as σ2
U, εQ

c where Qc = Q/σ2
U, ε. Similarly, we can write Var(εU, t) = σ2

U, εH
c

where Hc = 1.

The standard Kalman filter equations (given in the Appendix) are amended such that

Ft = σ2
U, εF

c
t

F c
t = ZPc

t|t−1Z
> + 1

Pt|t−1 = σ2
U, εP

c
t|t−1

The concentrated diffuse log-likelihood function for the univariate model is given as

ln Ldc = −T

2
ln(2π)− 2ln2− (T − 4)

2
ln(σ2

U, ε)−
1

2

T∑
t=5

lnF c
t −

1

2σ2
U, ε

T∑
t=5

ν2
t

F c
t

(6)

where νt and F c
t do not depend on σ2

U, ε. To determine the value of σ2
U, ε conditional on

a given value of ψ
(U)
c , the concentrated diffuse log-likelihood (6) is differentiated with

respect to σ2
U, ε and solved to give

σ̂2
U, ε(ψ

(U)
c ) =

1

(T − 4)

T∑
t=5

ν2
t

F c
t

.

This function is maximised with respect to the elements of ψ
(U)
c (Harvey, 1989, p127) to

obtain the maximum likelihood estimates of
√

qU, η and
√

qU, ω.
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3.2.2 Multivariate Model

The multivariate local level seasonal model described in (4) has two existing sub-series

(K = 2) and hence nine parameters in the model. Let the original nine parameters in

this multivariate model be denoted by ψ(m) such that:

ψ(m) =
(
σ2

η, σ2
1η∗ , σ2

2η∗ , σ2
ω, σ2

1ω∗ , σ2
2ω∗ , σ2

ε , σ2
1ε∗ , σ2

2ε∗
)>

.

The details of the state space form for the multivariate model is given in the Appendix. It

is not possible to concentrate any of the covariance matrices out of the likelihood function

as a block. However, it is possible to concentrate out one of the diagonal elements from

one of the component covariance matrices (Harvey, 1989, Section 8.2.2). The concentrated

parameter is set as the first diagonal element of Σ(m), ε, from (16) found in the Appendix.

The concentrated parameter for the multivariate model is given by σ2
c = σ2

ε + σ2
1ε∗ .

The standard Kalman filter equations are given an (m) subscript to denote the mul-

tivariate model and amended such that

F(m),t = σ2
cF

c
(m),t

Fc
(m),t = Z(m)P

c
(m),t|t−1Z

>
(m)

P(m),t|t−1 = σ2
cP

c
(m),t|t−1.

The concentrated diffuse log-likelihood function for the multivariate model is given

by the following:

ln L(m),dc = −T ln(2π)− 4ln2− (T − 4)ln(σ2
c )−

1

2

T∑
t=5

ln|Fc
(m),t|

− 1

2σ2
c

T∑
t=5

ν>t
(
Fc

(m),t

)−1
νt. (7)
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Note that for the multivariate model, there are Kq elements in the state vector which

are non-stationary. For the univariate model, q = 4, hence if K = 2, there are 8 non-

stationary elements in the state vector α(m),t (details are in the Appendix).

When ln L(m),c (7) is differentiated with respect to σ2
c and set to zero, the result is

σ̂2
c =

1

2(T − 4)

T∑
t=5

ν>t
(
Fc

(m),t

)−1
νt.

For the derivation of the general case (see Koopman et al., 1999).

For estimation, the parametrization of the component covariance matrices (Σ(m), η,

Σ(m), ω and Σ(m), ε) requires two important characteristics. Firstly, each of the estimated

component covariance matrices needs to be positive semi-definite, and secondly, the re-

lationships between the elements within each matrix needs to be retained. Also, the

off-diagonal elements here are required to be positive.

To satisfy these conditions, the concentrated log-likelihood is maximised with respect

to the elements of ψ
(m)
c = (x1 . . . x8)

′ which are:

x1 =

√
σ2

η

σ2
c

, x2 =

√
σ2

1η∗

σ2
c

, x3 =

√
σ2

2η∗

σ2
c

x4 =

√
σ2

ω

σ2
c

,

x5 =

√
σ2

1ω∗

σ2
c

, x6 =

√
σ2

2ω∗

σ2
c

x7 =

√
σ2

ε

σ2
c

, x8 =

√
σ2

2ε∗

σ2
c

.

To ensure that σ̂2
1ε∗ is non-negative, the maximum likelihood estimate for x7 will need

to be constrained so that 0 ≤ x2
7 ≤ 1. This can be achieved in the S-PLUS software by

setting a lower bound of -1 and an upper bound of 1 on the estimate for x7. With this

constraint in place, the component covariance matrices will be positive semi-definite.

To obtain the values corresponding to the estimated univariate parameters contained

in ψ̂(U), the expressions for the total parameter values are calculated from the estimated

multivariate parameters using (5).
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4. Results of Parameter Estimates for Varying Series Length

The parameter estimates for 1000 realisations for each length of T were calculated for

the univariate and multivariate methods for Set 1 and Set 2. The aim is to compare the

results of the univariate parameter estimates (σ̂2
U,η, σ̂2

U,ω, σ̂2
U,ε) with the corresponding

parameter estimates for the aggregate series (σ̂2
tot,η, σ̂2

tot,ω, σ̂2
tot,ε) calculated using (5) with

the multivariate estimates.

The results for all values of T studied are given in Table 2 for Set 1 and in Table

3 for Set 2. The tables show the median, mean and standard errors for the estimated

parameters of each component over the 1000 series generated. Not surprisingly, the esti-

mates closest to the true parameter values are for T = 240, the longest series. However,

the results for the median show that the parameter estimates given by the multivariate

method are closer to the exact value for every pair (univariate vs multivariate) for each

value of T except for the level component for T ≥ 40 for Set 1 and T > 40 for Set 2. This

is an interesting result which suggests there may be a series length, T = TL, at which this

‘cross-over’ occurs. Thus, for T > TL, the estimator of the level parameter has greater

precision using the univariate model.

In general, there is a marked improvement in the median of the estimates when the

sub-series are used in the estimation process. For the level and seasonal parameters,

there is an underestimate of the true value, whereas the estimates for the measurement

error parameter show an overestimate for each value of T . The means fluctuate slightly

as T increases, probably due to the presence of outliers but become closer overall to

their true parameter value as T reaches 240. As expected, the standard errors generally

decrease as T increases. They are generally smaller for the multivariate method than for

the univariate method.

For the seasonal parameter, the results are shown in Figure 1. The exact parameter

for the seasonal component is 1.0, as shown by the horizontal dotted line. It can be
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seen that the median of the estimates is an underestimate of the true value for each

length, T , for both the univariate and multivariate methods. However, the median for

the multivariate method is greater, and hence closer to the true value for every length.

The distributions are close to symmetrical for T ≥ 120, and show that asymptotically the

estimate approaches the true value. Again, as T decreases, the distributions become more

positively skewed with outliers sometimes more extreme for the multivariate method.

The range and interquartile range are smaller for most T for the multivariate method.

In particular for Set 1, the distribution of the parameter estimates for the multivariate

method for T = 24 is similar to that for the univariate method for T = 40. Notably

for Set 2, when T = 28, 24, and 20, the lower quartile of the multivariate method is

approximately equal to the median for the corresponding T for the univariate method.

To compare the variability of the estimates for the two methods, the relative efficien-

cies of the variances are calculated (using RE= V(univ)/V(mult)) from the results shown

in Tables 2 and 3 and are given in Table 4. This table highlights the gains which are

achieved with the multivariate model. For Set 1 the relative efficiency varies between

1.20 and 1.38 for the level parameter. For the seasonal parameter, the relative efficiency

shows greater gains than for the level parameter, with values ranging from 1.30 for T = 20

to 1.67 for T = 80. The gains are higher again for the measurement error parameter.

For Set 2, the relative efficiencies of the level parameter estimates range from 1.06 for

T = 24 to 1.47 for T = 120. For the seasonal parameter, the gains are much greater,

with values ranging from 1.73 for T = 24 to 2.28 for T = 240. For the estimate of the

seasonal parameter, the relative efficiency of the variances are higher for Set 2 than for

Set 1, although all values are above unity. For the measurement error, there is not a

distinctive pattern across T .

These results show that for the two examples studied, the use of the multivariate ap-

proach in the estimation of parameters improves the accuracy of the parameter estimates
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of the aggregated series.

TABLE 2 ABOUT HERE

TABLE 3 ABOUT HERE

TABLE 4 ABOUT HERE

FIGURE 1 ABOUT HERE
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5. Effect of Parameter Estimation on MSE of Model Components

The second stage of the estimation of the state vector components and their cor-

responding mean squared errors are discussed in this section. When considering the

variance of the seasonally adjusted series, the prediction mean squared error (PMSE) of

the seasonal component is required. The second stage of the estimation process involves

the substitution of the estimated parameters in the theoretical expressions for the PMSE

of the state vector components. This process is known to produce an underestimate of

the true PMSE in univariate models. The bias is often referred to as the ‘näıve bias’ and

results from not accounting for the variability resulting from the estimation of the model

parameters (Durbin & Koopman, 2001; Quenneville & Singh, 2000; Pfeffermann & Tiller,

2005). In this section, the näıve bias will be examined for different series lengths for the

univariate model and for the multivariate model. It is not known how the näıve bias

behaves in multivariate models, as previous literature has focussed on univariate models

such as the local level model as discussed in Quenneville & Singh (2000) and Pfeffermann

& Tiller (2005). A trigonometric seasonal model is also considered in Pfeffermann &

Tiller (2005).

The smoothed estimate of the state vector, αt (defined in (15) in the Appendix),

is conditional on all observations, (YT ), and is denoted by at|T . It is the mean of the

distribution of αt given YT and is defined in Harvey (1989, Section 3.6). The matrix Vt|T

is the MSE matrix of the estimator, at|T .

If the estimated parameters, ψ̂(U), are used in the Kalman smoother, then at|T and

Vt|T are estimated with:

ât|T = E
(
αt|YT , ψ̂(U)

)

V̂t|T = Var
(
αt|YT , ψ̂(U)

)

= ET

[(
αt − ât|T

) (
αt − ât|T

)>]
.
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The main focus of this paper is to compare the accuracy of the seasonally adjusted

aggregate series of the direct approach with that of the multivariate approach. A simple

transformation of the multivariate model allows explicit analysis of Ytot,t and hence a

method of comparison of the accuracy of the seasonally adjusted aggregate series between

the two approaches.

Let A be a K×K matrix:

A =




1 1 1 . . . 1 1

1 0 0 . . . 0 0

0 1 0 . . . 0

...
. . .

...

0 0 0 . . . 1 0




=




1 1 . . . 1

0

I(K−1)
...

0




.

Applying A to obtain the transformed data, the aggregate series becomes augmented to

the set comprising of series 1 to series (K − 1). Define Y(M), t such that

Y(M), t = A (Y1t, Y2t, . . . , YKt)
> = (Ytot,t, Y1t, . . . , YK−1,t)

> . (8)

For the multivariate model, the smoothed state vector and its MSE matrix have an

(M) subscript:

â(M), t|T = E
(
α(M), t|Y(M), T , ψ̂(M)

)

V̂(M), t|T = Var
(
α(M), t|Y(M), T , ψ̂(M)

)
.

where ψ̂(M), and is given by

ψ̂(M) =
(
σ̂2

tot,η, σ̂2
η, σ̂2

1η∗ , σ̂2
tot,ω, σ̂2

ω, σ̂2
1ω∗ , σ̂2

tot,ε, σ̂2
ε , σ̂2

1ε∗
)>

. (9)
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The estimate of the seasonal component given by the univariate approach is denoted

by ŜU
t|T , which is an element of ât|T . Its mean squared error, MSE

(
ŜU

t|T
)

is an element

of V̂t|T . Similarly for the multivariate approach, the estimate of the seasonal compo-

nent is denoted by ŜM
t|T , and is an element of â(M), t|T . Its mean squared error is given

by MSE
(
ŜM

t|T
)

and is an element of V̂(M), t|T . More detail on α(M), t is given in the

Appendix.

5.1 Näıve Bias

The näıve bias is the bias in the prediction error variance resulting from the substitu-

tion of the parameter estimates into the Kalman smoother. To calculate the näıve bias,

the ‘true’ MSE is approximated using the simulated series component and the estimated

series component, as given in Pfeffermann & Tiller (2005, p903). The calculations here

are based on 1000 simulated series for each series length. For the seasonal component, it

is

MSEU
t =

1000∑
i=1

(
ŜU

t|T, i − St, i

)2

1000
, i = 1, . . . , 1000 (10)

where St,i is the simulated value of the seasonal component at time t for the ith generated

series and ŜU
t|T, i is the estimated seasonal component at time t determined by the Kalman

smoother, given the vector of estimated parameters, ψ̂(U), for the ith generated data series

of length T .

The form of (10) for the multivariate approach is given by

MSEM
t =

1000∑
i=1

(
ŜM

t|T, i − St, i

)2

1000
, i = 1, . . . , 1000.
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For the näıve bias, let M̂SE
U

i,t denote the state variance for the seasonal component

calculated by the Kalman smoother with the estimated parameters, ψ̂(U), given by the

univariate model for the ith generated series. Similarly, M̂SE
M

i,t is the notation adopted

for the multivariate model. The mean bias over the 1000 realisations and its associated

MSE are determined by

Univ.: d
U

t =
1000∑
i=1

M̂SE
U

i,t −MSEU
t

1000
, d

U(2)

t =
1000∑
i=1

(M̂SE
U

i,t −MSEU
t )2

1000

Mult.: d
M

t =
1000∑
i=1

M̂SE
M

i,t −MSEM
t

1000
, d

M(2)

t =
1000∑
i=1

(M̂SE
M

i,t −MSEM
t )2

1000
.

The bias may be considered relative to the true value for each t = 1, . . . , T . The mean

over T can then be evaluated and expressed as a percentage. It is termed the ‘mean

percent relative bias’, and together with the ‘mean percent relative root mean squared

error’ are defined in Pfeffermann & Tiller (2005, p904). They are given here for both

approaches.

Univariate:

Rel-Bias =
100

T

T∑
t=1

(
d

U

t

MSEU
t

)
, Rel-RMSE =

100

T

T∑
t=1




√
d

U(2)

t

MSEU
t


 ; (11)

Multivariate:

Rel-Bias =
100

T

T∑
t=1

(
d

M

t

MSEM
t

)
, Rel-RMSE =

100

T

T∑
t=1




√
d

M(2)

t

MSEM
t


 . (12)

The näıve bias is calculated by Quenneville & Singh (2000) for a local level model

(which does not include a seasonal component) for series of lengths T = 40 and T = 100.
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They found that the näıve bias is greater in absolute terms for the moderate length

(T = 40) than for the longer series (T = 100). For the moderate length, the mean

percent relative bias for 1000 realisations was reported to be -21.2%, whereas for the

series with T = 100, the relative bias was -9.0%.

Pfeffermann & Tiller (2005) reproduce the experiment carried out by Quenneville

& Singh (2000) with series of lengths T = 40 and T = 100 but extend the number of

realisations to 5000. Their results for the näıve bias are slightly smaller, with the mean

percent relative näıve bias for T = 40 reported as -18.5% and for T = 100, it is -7.6%.

Although these results are for a simpler model than is studied here, they show the

effect of using the estimated parameters in the calculation of the predicted mean squared

error of the state vector. It is expected that for this study, the näıve bias will be large

and negative and that it will decrease (in absolute terms) as the length of the series is

increased. The univariate model being investigated here is the local level seasonal model

which differs from a local level model in that it also has a dummy seasonal component.

The multivariate model is also considered.

5.1.1 Results for Näıve Bias

The results for the näıve bias for the seasonal component for Set 1 and Set 2 for 1000

realisations of each series length are given in Table 5. The Rel-Bias and Rel-RMSE for

the univariate model and multivariate model are calculated with the equations in (11)

and (12) respectively.

TABLE 5 ABOUT HERE
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For Set 1, Table 5 shows that the relative bias calculated for the univariate model

ranges from -27.97 for T = 24, down to -5.75 for T = 240. Although this model is different

to the local level model, the result for T = 40 of -19.38% is of a similar magnitude to the

result of -21.2% reported in Quenneville & Singh (2000) and the result of -18.5% reported

in Pfeffermann & Tiller (2005).

The relative bias calculated for the multivariate model of Set 1 ranges from -27.57 for

T = 24, down to -6.33 for T = 240. From T = 20 to T = 28 the results for the relative

bias are very similar for the two approaches. It is not until T = 40 and T = 120 that a

difference becomes more noticeable. That is, there is a slight increase in bias (in absolute

terms) for the multivariate model compared to the univariate model. However, for Set 1,

the Rel-RMSE is smaller for each value of T for the multivariate model. Thus, for values

of T less than 40, the multivariate model performs slightly better than the univariate

model.

For Set 2, the results in Table 5 show a relative bias which ranges from -27.04 for

T = 20 down (in absolute terms) to -4.48 for T = 240. For this set, there is considerable

improvement in the Rel-Bias for the multivariate model especially for T ≤ 80. For T < 40,

the Rel-RMSE is smaller for each value of T for the multivariate model. For T ≥ 40, the

Rel-RMSE is larger for the multivariate model, although the Rel-Bias is slightly smaller.

For Set 2, the näıve bias is greatly improved by applying the multivariate model to series

with short to moderate length.

6. Conclusion

In this paper, a simulation study showed the effects of estimating the aggregate series

parameters with the univariate and multivariate methods for different series lengths. For

the two examples studied, it was shown that the bias of the estimated parameters was

much less for the multivariate model than for the univariate model. This was especially
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the case for short to medium length time series. The relative efficiencies of the seasonally

adjusted aggregated series also showed good gains for the multivariate model.

In the second stage, the relative näıve bias and the relative root mean squared error

were calculated for the two sets for both the univariate and multivariate models. The

results showed that the näıve bias of the variance of the seasonally adjusted series could

be decreased substantially with the use of the multivariate model. This was evident from

the results for Set 2, where the relative näıve bias was almost half of that obtained with

the univariate model for short to medium length time series. There was also a slight

decrease in the relative RMSE.

From this study, it can be concluded that very good gains for the accuracy of the sea-

sonally adjusted series are possible through using the multivariate approach and that the

conditions rely on the relative parameters of the seasonal and non-seasonal components

of the sub-series.
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Appendix

State space form for the univariate model

The state space form of the univariate LLS model as described in Section 2.1 is given

by:

Yt = Zαt + εU, t, (13)

αt+1 = Tαt + Gγt, (14)

where, for quarterly data (s=4), and a dummy seasonal component,

αt = [Lt, St, St−1, St−2]
> , α1 ∼ N(a1,P1),

γt = [ηU, t, ωU, t]
′
, γt ∼ N(0,Q),

Z =

(
1 1 0 0

)
, εU, t ∼ N(0, H),

T =




1 0 0 0

0 −1 −1 −1

0 1 0 0

0 0 1 0




, G =




1 0

0 1

0 0

0 0




, Q =




σ2
U, η 0

0 σ2
U, ω


 ,

Var (Gγt) = GQG> =




σ2
U, η 0 0 0

0 σ2
U, ω 0 0

0 0 0 0

0 0 0 0




, H = σ2
U, ε. (15)

The standard set of filtering equations which make up the Kalman filter may be found

in Chapter 4 of Durbin & Koopman (2001). These equations are applied to the aggregate
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series data and yield the estimates of the components for each time point at|t and their

MSEs, Pt|t.

The variance matrix, P1, of the initial state vector α1, is assumed to have the form:

P1 = κP∞,1 + P∗,1,

where κ is a large scalar value, P∗,1 is the covariance matrix of the stationary components

in α1 and P∞,1 is the covariance matrix of the non-stationary components in α1 (Zivot

& Wang, 2006).

In particular, for the univariate local level seasonal BSM with a dummy seasonal

component model, a1 = E(α1) is a 4× 1 zero vector, P∞,1 is a 4× 4 identity matrix and

P∗,1 is a 4 × 4 zero matrix. The term ‘zero vector’ is a vector in which each element is

zero, and ‘zero matrix’ is used to describe a matrix in which each element is zero. The

exact initial Kalman filter as described in detail in Koopman & Durbin (2000) can be

applied using the S+FinMetrics software, in the SsfPack set of functions Koopman et

al. (1999).

State space form for the multivariate model

The state space form for the multivariate BSM allows for the unconventional format

of having correlated measurement errors. This is due to the common disturbance term,

εt in the model. To enable use of standard software packages, Durbin & Koopman (2001)

suggest including the measurement errors in the state vector. The state space form of

the multivariate LLS model as described in Section 2.2 is given by:

Y(m), t = (Z(m) ⊗ IK)α(m), t,

α(m), t+1 = (T(m) ⊗ IK)α(m), t + (G(m) ⊗ IK)γ(m), t,
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where ⊗ is the Kronecker product. For quarterly data (s=4), and a dummy seasonal

component,

Y(m), t = [Y1t, . . . , YKt]
> ,

α(m), t = [L1t, . . . , LKt, S1t, . . . , SKt, S1, t−1, . . . , SK, t−1, S1, t−2, . . . , SK, t−2,

(εt + ε∗1t), . . . , (εt + ε∗Kt) ]> ,

γ(m), t = [ (ηt + η∗1t), . . . , (ηt + η∗Kt), (ωt + ω∗1t), . . . , (ωt + ω∗Kt),

(εt+1 + ε∗1, t+1), . . . , (εt+1 + ε∗K, t+1)
]>

.

The system matrices are given by

Z(m) =

(
1 1 0 0 1

)
, G(m) =




1 0 0

0 1 0

0 0 0

0 0 0

0 0 1




, T(m) =




1 0 0 0 0

0 −1 −1 −1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0




,

and hence the covariance matrix of the multivariate system is

Var
(
(G(m) ⊗ IK)γ(m), t

)
=




Ση 0K 0K 0K 0K

0K Σω 0K 0K 0K

0K 0K 0K 0K 0K

0K 0K 0K 0K 0K

0K 0K 0K 0K Σε




,

where 0K represents a K ×K matrix of zeros. If K = 2, the covariance matrix for the
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level component, Σ(m), ε, is given by (16),

Σ(m), ε =




σ2
ε + σ2

1ε∗ σ2
ε

σ2
ε σ2

ε + σ2
2ε∗


 (16)

and similarly for Σ(m), η and Σ(m), ω, where (m) denotes the multivariate model.

The state space model for the transformed system, Y(M), t (8), with K = 2 may be

specified as follows, given that the measurement errors are placed within the state vector:

Y(M), t = (Z(m) ⊗ I2)α(M), t,

α(M), t+1 = (T(m) ⊗ I2)α(M), t + (G(m) ⊗ I2)γ(M), t, (17)

where I2 is a 2× 2 identity matrix and

α(M), t = [Ltot, t, L1t, Stot, t, S1t, Stot, t−1, S1, t−1, Stot, t−2, S1, t−2, εtot, t, (εt + ε∗1t)]
> ,

γ(M), t =
[

ηtot, t, (ηt + η∗1t), ωtot, t, (ωt + ω∗1t), εtot, t+1, (εt+1 + ε∗1, t+1)
]>

, (18)

with α(M), 1 ∼ N(a(M), 1,P(M), 1).

The transformed covariance matrix for the error component is denoted by Σ(M), ε:

Σ(M), ε =




σ2
tot,ε 2σ2

ε + σ2
1ε∗

2σ2
ε + σ2

1ε∗ σ2
ε + σ2

1ε∗


 , (19)

and similarly for Σ(M), η and Σ(M), ω.

To compensate for the restructuring of the state vector, the set up of the exact initial

conditions matrices described in Durbin & Koopman (2001, Section 5.2) is amended. The
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variance matrix, P(M), 1, of the initial state vector, α(M), 1, is given by

P(M),1 = κP(M)∞,1 + P(M)∗,1, (20)

The P(M)∗,1 matrix in (20) holds the variance of the stationary part of α(M), 1. It is a

10 × 10 zero matrix with the lower right 2 × 2 block diagonal replaced by the Σ(M), ε

covariance matrix. The P(M)∞,1 matrix (also of dimension 10 × 10 here since K = 2) is

an identity matrix but with the lower right 2× 2 block diagonal replaced by a 2× 2 zero

matrix. Also, a(M), 1 is a 10× 1 zero vector. For further details of the exact initialisation

of the filter refer to Koopman & Durbin (2000).

Kalman Filter

The standard set of filtering equations may be found in Chapter 4 of Durbin & Koop-

man (2001). For the univariate BSM in state space form, as described in (13) and (14),

with corresponding system matrices (15), these are given by

at+1|t = Tat|t−1 + Ktνt,

Pt+1|t = TPt|t−1L
>
t + GQG>,

where

νt = Yt − Zat|t−1 = Zαt + εU, t − Zat|t−1,

Ft = Var(νt) = ZPt|t−1Z
> + H, H = Var(εU, t),

Kt = TPt|t−1Z
>F−1

t ,

Lt = T−KtZ.
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Table 1: Parameters for sub-series Set 1 and Set 2.

σ2
η σ2

1η∗ σ2
2η∗ σ2

ω σ2
1ω∗ σ2

2ω∗ σ2
ε σ2

1ε∗ σ2
2ε∗

Set 1 0.0196 0.4192 0.0023 0.0455 0.4091 0.4091 0.0393 0.8384 0.0046
Set 2 0.0258 0.0150 0.3819 0.0272 0.8325 0.0588 0.0516 0.0300 0.7638

Table 2: Medians, Means and standard errors (in italics) of parameter estimates for Set
1 for 1000 realisations.

Set 1 Level Seasonal Error
True=0.5 True=1.0 True=1.0

Median T Mult. Univ. Mult. Univ. Mult. Univ.
20 0.210 0.194 0.726 0.477 1.410 1.680
24 0.234 0.210 0.704 0.523 1.442 1.641
28 0.261 0.238 0.768 0.576 1.438 1.649
40 0.313 0.344 0.846 0.716 1.332 1.413
80 0.434 0.457 0.983 0.937 1.019 1.026

120 0.426 0.446 0.962 0.908 1.088 1.130
240 0.472 0.481 0.999 0.984 1.003 1.020

Mean T Mult. Univ. Mult. Univ. Mult. Univ.
20 0.314 0.308 0.862 0.639 1.499 1.804

0.011 0.012 0.019 0.021 0.024 0.035
24 0.313 0.314 0.844 0.650 1.499 1.777

0.010 0.011 0.017 0.020 0.023 0.032
28 0.324 0.322 0.843 0.673 1.494 1.747

0.009 0.010 0.015 0.018 0.022 0.031
40 0.355 0.372 0.906 0.784 1.379 1.516

0.008 0.009 0.013 0.016 0.021 0.027
80 0.457 0.481 1.017 0.962 1.041 1.093

0.007 0.007 0.009 0.012 0.014 0.020
120 0.439 0.460 0.981 0.936 1.102 1.148

0.005 0.006 0.008 0.010 0.011 0.016
240 0.476 0.494 1.011 0.999 1.004 1.013

0.004 0.004 0.005 0.007 0.008 0.012
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Table 3: Medians, Means and standard errors (in italics) of parameter estimates for Set
2 for 1000 realisations.

Set 2 Level Seasonal Error
True=0.5 True=1.0 True=1.0

Median T Mult. Univ. Mult. Univ. Mult. Univ.
20 0.294 0.196 0.818 0.486 1.183 1.598
24 0.312 0.239 0.829 0.556 1.189 1.607
28 0.332 0.269 0.827 0.603 1.234 1.560
40 0.370 0.349 0.863 0.740 1.181 1.462
80 0.445 0.449 0.936 0.918 1.112 1.130

120 0.458 0.470 0.969 0.942 1.043 1.103
240 0.489 0.489 0.990 0.980 0.996 1.022

Mean T Mult. Univ. Mult. Univ. Mult. Univ.
20 0.400 0.336 0.911 0.679 1.271 1.766

0.012 0.013 0.017 0.023 0.022 0.035
24 0.396 0.339 0.886 0.665 1.273 1.754

0.011 0.011 0.015 0.019 0.021 0.032
28 0.398 0.354 0.875 0.688 1.281 1.694

0.010 0.011 0.013 0.018 0.019 0.031
40 0.413 0.390 0.913 0.785 1.226 1.523

0.008 0.009 0.011 0.016 0.017 0.028
80 0.456 0.474 0.952 0.934 1.132 1.150

0.006 0.007 0.008 0.012 0.012 0.020
120 0.469 0.477 0.971 0.957 1.073 1.114

0.005 0.006 0.006 0.009 0.010 0.016
240 0.486 0.496 0.995 0.992 1.022 1.022

0.004 0.004 0.004 0.007 0.07 0.012

Table 4: Relative efficiency of the variances of the parameter estimates for Set 1 and Set
2 for 1000 realisations.

Set 1 Set 2
T Level Seasonal Error Level Seasonal Error
20 1.20 1.30 2.14 1.13 1.79 2.50
24 1.29 1.35 2.05 1.06 1.73 2.48
28 1.25 1.43 1.98 1.19 1.89 2.61
40 1.23 1.49 1.78 1.30 2.00 2.63
80 1.33 1.67 1.95 1.44 2.27 2.70

120 1.35 1.63 1.99 1.47 2.17 2.41
240 1.38 1.57 1.89 1.37 2.28 2.68
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Table 5: Percent mean relative näıve bias and relative root mean squared error of
smoothed seasonal component MSE for Set 1 and Set 2 for 1000 realisations with T = 20,
24, 28, 40, 80, 120, 240.

Näıve Bias of Multivariate Univariate
Seasonal component

T Rel-Bias Rel-RMSE Rel-Bias Rel-RMSE
Set 1 20 -26.97 41.14 -27.69 44.65

24 -27.57 40.09 -27.97 42.82
28 -25.78 38.58 -25.53 40.74
40 -21.84 34.15 -19.38 35.20
80 -13.84 24.12 -14.29 27.96

120 -7.19 18.32 -6.71 21.10
240 -6.33 14.46 -5.75 17.01

Set 2 20 -14.34 42.09 -27.04 43.79
24 -15.92 40.02 -26.88 42.55
28 -14.92 39.80 -26.30 41.53
40 -13.02 37.88 -18.60 35.15
80 -5.83 27.78 -12.66 27.42

120 -4.53 25.75 - 5.57 21.25
240 -1.14 18.51 -4.48 16.55
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Figure 1: Distribution of the seasonal parameter estimate using the univariate and mul-
tivariate methods for 1000 realisations of Set 1 (top) and Set 2 (bottom) with T = 240,
120, 80, 40, 28, 24, 20.


	wpcover
	Centre for Statistical and Survey Methodology
	The University of Wollongong
	Working Paper

	manuscript_CBirrell_ANZJS

