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Abstract

We investigate kernel estimators of multivariate density derivative functions using gen-

eral (or unconstrained) bandwidth matrix selectors. These density derivative estimators

have been relatively less well researched than their density estimator analogues. A ma-

jor obstacle for progress has been the intractability of the matrix analysis when treating

higher order multivariate derivatives. With an alternative vectorization of these higher

order derivatives, mathematical intractabilities are surmounted in an elegant and uni-

fied framework. The finite sample and asymptotic analysis of squared errors for density

estimators are generalized to density derivative estimators. Moreover, we are able to

exhibit a closed form expression for a normal scale bandwidth matrix for density deriva-

tive estimators. These normal scale bandwidths are employed in a numerical study to

demonstrate the gain in performance of unconstrained selectors over their constrained

counterparts.
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1 Introduction

Estimating probability density functions with kernel functions has had notable success due

to their ease of interpretation and visualization. On the other hand, estimating derivatives of

density functions has received less attention. This is partly because it is a more challenging

theoretical problem (especially for multivariate data). Nonetheless there remains much

information about the structure of a density function that is not easily ascertained from the

density function itself, for example, local maxima and minima. One of the original papers

on kernel density estimation (Parzen (1962)) was also concerned with the estimating the

global mode of the density function, though not from a density derivative point of view.

It can be recast as finding the local maxima via derivative estimates, the global mode

follows as the largest of these local maxima. The focus on a mode as a single point can

be extended to the region immediately surrounding the mode, known as a bump or modal

region. Modal regions can be used to determine the existence of multi-modality and/or

clusters. The Godtliebsen, Marron, and Chaudhuri (2002) feature significance technique

for bump-hunting relies on estimating and characterizing the first and second derivatives

for bivariate data. In an econometrics setting, the Engel curve describes the demand for a

good/service as a function of income; it classifies goods/services based on the slope of the

Engel curve and the first derivative is an essential component for interpreting them, see

Hildenbrand and Hildenbrand (1986). In a more general setting, Singh (1977) suggests, as

an application of multivariate density derivatives to estimate the Fisher information matrix

in its translation parameter form.

The first paper to be concerned with univariate kernel density derivative estimation

appears to have been Bhattacharya (1967), followed by Schuster (1969) and Singh (1979,

1987). Singh (1976) studied a multivariate estimator with a diagonal bandwidth matrix,

while Härdle, Marron and Wand (1990) used a bandwidth parametrized as a constant times

the identity matrix. This previous research has mostly focused on constrained parametriza-

tions of the bandwidth matrix since this simplifies the matrix analysis compared to the

general, unconstrained parametrization. Analyzing squared error measures for general ker-

nel density derivative estimators has reached an impasse using the traditional vectorization

of higher order derivatives of multivariate functions to transform the higher order derivative

tensor into a more tractable vector form. Here we introduce an alternative vectorization of

higher order derivatives, a subtle rearrangement of the traditional vectorization that allows

us to easily write down the usual error expressions from the density estimation case. Thus

we generalize the squared error analysis for kernel density derivative estimators. Further-

more, we are able to write down a closed form expression for a normal scale bandwidth

matrix, i.e., the optimal bandwidth for the rth order derivative of a normal density with

normal kernels. Normal scale selectors were the step that eventually led to the development

of the now widely used bandwidth selectors for density estimation; we set up a similar
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starting point for future bandwidth selection in density derivative estimation.

In Section 2 we define a kernel estimator of a multivariate density derivative, and pro-

vide the results for mean integrated square convergence both asymptotically and for finite

samples. The influence of the bandwidth matrix on convergence is established here. In

Section 3 we focus on the class of normal mixture densities. Estimation of these densities

with normal kernels produces further simplified special cases of the results in the Section 2,

where we develop a normal scale bandwidth selector. We use these normal scale selectors to

quantify the improvement when using unconstrained matrices in asymptotic performance in

Section 4, and in finite sample performance in Section 5. We illustrate normal scale selectors

on data arising from high throughput biotechnology in Section 6. The usual normal scale

selectors based on the density function may lead to insufficient smoothing when estimating

the density curvature (or second derivative). We conclude with a discussion in Section 7.

2 Kernel density derivative estimation

Multivariate kernel density estimation has reached maturity, and recent advances there can

be carried over to the density derivative case. To proceed, we use the linearity of the kernel

density estimator to define a kernel density derivative estimator. The usual performance

measure for kernel density estimation is the mean integrated squared error (MISE), which

is easily extended to cover density derivatives.

We need some notation. For a matrix A let

A⊗r =

r⊗

i=1

A =

r matrices︷ ︸︸ ︷
A⊗ · · · ⊗A

denote the rth Kronecker power of A. If A ∈ Mm×n (i.e., A is a matrix of order m× n)

then A⊗r ∈ Mmr×nr ; we adopt the convention A⊗1 = A and A⊗0 = 1 ∈ R.

If f : Rd → R is a real function of a vector variable let D
⊗rf(x) ∈ Rdr be the vector

containing all the partial derivatives of order r of f at x, arranged so that we can formally

write

D
⊗rf =

∂f

(∂x)⊗r
.

Thus we write the rth derivative of f as a vector of length dr, and not as an r-fold tensor

array or as a matrix. Moreover, if f : Rd → Rp is a vector function of a vector variable with

components f = (f1, . . . , fp), then we set

D
⊗rf(x) =




D
⊗rf1(x)

...

D
⊗rfp(x)


 .

Notice that, using this notation, we have D(D⊗rf) = D
⊗(r+1)f . Also, the gradient of f

is just D
⊗1f and the Hessian Hf = ∂2f/(∂x∂xT ) is such that vecHf = D

⊗2f , where vec
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denotes the vector operator (see Henderson and Searle (1979)). This vectorization carries

some redundancy, for example, D⊗2f contains repeated mixed partial derivatives whereas

the usual vectorization vechHf contains only the unique second order partial derivatives,

with vech denoting the vector half operator (see Henderson and Searle (1979)). The latter is

usually preferred since it is minimal and its matrix analysis is not more complicated than the

former. However for r > 2, it appears that the matrix analysis using a generalization of the

vector half operator becomes intractable. Other authors have used the same vectorization

we propose to develop results for higher order derivatives: Holmquist (1996a) computes

derivatives of the multivariate normal density function, and Chacón and Duong (2010)

compute kernel estimators of multivariate integrated density derivative functionals.

Suppose now that f : Rd → R is a density and we wish to estimate D
⊗rf(x) for some

r ∈ N. To this end, we use the kernel estimator D̂⊗rf(x;H) = D
⊗rf̂(x;H) where, given a

random sample X1,X2, . . . ,Xd drawn from f ,

f̂(x;H) = n−1
n∑

i=1

KH(x−Xi) (1)

denotes the multivariate kernel density estimator with kernel K and bandwidth matrix H,

with KH(x) = |H|−1/2K(H−1/2x). Conditions on K and H are given later. Notice that

alternative expressions for D̂⊗rf(x;H) are

D̂⊗rf(x;H) = n−1
n∑

i=1

D
⊗rKH(x−Xi) (2)

= n−1(H−1/2)⊗r
n∑

i=1

(D⊗rK)H(x−Xi)

= n−1|H|−1/2(H−1/2)⊗r
n∑

i=1

D
⊗rK

(
H−1/2(x−Xi)

)
.

The last expression here is quite helpful for implementing the estimator since it separates

the roles of K and H. This is the multivariate generalization of the kernel estimator that

appears, for instance, in Härdle, Marron and Wand (1990) and Jones (1994).

Here the most general (unconstrained) form of the bandwidth matrix is used. In con-

trast, earlier papers considered this estimator, but with constrained parametrizations of the

bandwidth matrix: Härdle, Marron and Wand (1990) used a parametrization where H is

h2 multiplied by the identity matrix; Singh (1976) used H = diag(h21, h
2
2, . . . , h

2
d). However,

in the case r = 0 (estimation of the density itself), Wand and Jones (1993) gave examples

that show that a significant gain may be achieved by using unconstrained parametrizations

over constrained ones; see also Chacón (2009). We generalize these results to arbitrary

derivatives in Section 4.

We measure the error of the kernel density derivative estimator at the point x by using
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the mean squared error

MSE(x;H) ≡ MSE{D̂⊗rf(x;H)} = E‖D̂⊗rf(x;H)− D
⊗rf(x)‖2,

with ‖ · ‖ the Euclidean norm. We have the two forms MSE(x;H) and MSE{D̂⊗rf(x;H)},

depending on whether we wish to suppress the explicit dependence on D̂⊗rf or not. It is

easy to check that we can write MSE(x;H) = B2(x;H) + V(x;H), where

B2(x;H) = ‖ED̂⊗rf(x;H)− D
⊗rf(x)‖2,

V(x;H) = E‖D̂⊗rf(x;H)− ED̂⊗rf(x;H)‖2.

Analogously, as a global measure of the performance of the estimator, we use the mean

integrated squared error

MISE(H) ≡ MISE{D̂⊗rf(·;H)} =

∫
MSE{D̂⊗rf(x;H)}dx.

Our results rely on the following assumptions on the bandwidth matrix, the density

function and the kernel function.

(A1) H, the bandwidth matrix, is symmetric and positive-definite, and such that every

element of H → 0 and n−1|H|−1/2(H−1)⊗r → 0 as n → ∞.

(A2) f is a density function for which all partial derivatives to order r + 2 exist, all its

partial derivatives of order r are square integrable, and all its partial derivatives of

order r + 2 are bounded, continuous, and square integrable.

(A3) K is a positive, symmetric, square integrable density function such that
∫
xxTK(x)dx =

m2(K)Id for some real number m2(K) with Id the identity matrix of order d, and all

its partial derivatives of order r are square integrable.

This is not the minimal set of assumptions required, but it provides a useful starting point

for quantifying the squared error results. We leave it to future research to reduce these

assumptions.

For any vector function g : Rd → Rp let

R(g) =

∫
g(x)g(x)T dx ∈ Mp×p.

For an arbitrary kernel L we write

RL,H,r(f) =

∫
LH ∗D⊗rf(x)D⊗rf(x)Tdx ∈ Mdr×dr ,

where the convolution operator is applied to each component of D⊗rf(x) separately. Ex-

panding all the terms in the bias-variance decomposition we obtain the following exact

representation of the MISE function.
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Theorem 1. Suppose (A1)–(A3) hold. Then

MISE{D̂⊗rf(·;H)} = trR(D⊗rf) + n−1|H|−1/2 tr
(
(H−1)⊗rR(D⊗rK)

)

+ (1− n−1) trRK∗K,H,r(f)− 2 trRK,H,r(f).

The proof of this, along with the proofs for other theorems in this paper, are deferred

to the Appendix.

The form of the MISE given in the theorem involves a complicated dependence on the

bandwidth matrix H via the R functionals. To show this dependence more clearly, we

search for a more mathematically tractable form. The next result gives an asymptotic

representation of the MISE function that can be viewed as an extension of (4.10) in Wand

and Jones (1995, p. 98), which corresponds to the case r = 0.

Theorem 2. Suppose (A1)–(A3) hold. Then

MISE{D̂⊗rf(·;H)} = AMISE{D̂⊗rf(·;H)} + o
(
n−1|H|−1/2 trr(H−1) + tr2 H

)
,

where

AMISE{D̂⊗rf(·;H)} = n−1|H|−1/2 tr
(
(H−1)⊗rR(D⊗rK)

)

+ m2(K)2

4 tr
[
(Idr ⊗ vecT H)R(D⊗(r+2)f)(Idr ⊗ vecH)

]
.

The AMISE-optimal bandwidth matrix HAMISE is defined to be the matrix, amongst

all symmetric positive definite matrices, that minimizes AMISE{D̂⊗rf(·;H)}. Next we give

the order of such a matrix, and the order of the resulting minimal AMISE.

Theorem 3. Suppose (A1)–(A3) hold. Every entry of the optimal bandwidth matrix HAMISE

is of order O(n−2/(d+2r+4)), and minHAMISE{D̂⊗rf(·;H)} is of order O(n−4/(d+2r+4)).

Theorems 1, 2 and 3 generalize the existing MISE, AMISE, and HAMISE results for

constrained to unconstrained bandwidth matrices. These rates of convergence reveal the

dependence on dimension d and derivative order r. As either of these increase, the minimum

achievable AMISE increases. At least asymptotically, the marginal increase in difficulty in

estimating a derivative an order higher is the same as estimating a density two dimensions

higher.

To appreciate the ramifications our theorems, we briefly review the literature for kernel

density derivative estimation. Bhattacharya (1967) showed that the rate of convergence in

probability of a univariate kernel density derivative estimator with a second order kernel is

bounded by n−1/(2r+4), without developing intermediate squared error convergence results.

Schuster (1969) established the same rate for a wider class of kernels. Singh (1979, 1987)

showed, for his specially constructed univariate kernel estimator, that n−2(p−r)/(2p+1) is the

MSE and MISE rate of convergence. This estimator employs kernels whose rth moment is
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1 and all other jth moments are zero, j = 0, 1, . . . , p− 1, j 6= r for p > r; the order of these

kernels is greater than or equal to r. Since we assume second order kernels (assumption

(A3)), Theorem 3 does not generalize this result for r > 2. For second order kernels, Wand

and Jones (1995, p. 49) showed that p = r + 2 which gives the MISE to be O(n−4/(2r+5)),

which is indeed Theorem 3 with d = 1.

For d-variate density derivative estimation, Stone (1980) had that for any linear non-

parametric estimator, the minimum achievable MSE of an estimator of g, a scalar functional

of D⊗rf , is O(n−2(p−r)/(2p+d)), where p > r and the pth order derivative of g is bounded.

From (A2), we have p = r+ 2 so the MISE rate is O(n−4/(d+2r+4)), the rate in Theorem 3.

However this general result cannot elucidate such questions as the relationship between

the convergence rate and the bandwidth matrix, which Theorems 1, 2, and 3 demonstrate

clearly. Singh (1976) showed that a multivariate kernel density derivative estimator with

a diagonal bandwidth matrix H = diag(h21, h
2
2, . . . , h

2
d) is mean square convergent, though

the rate of convergence was not specified. More recently Duong, Cowling, Koch, and Wand

(2008) established that the MISE convergence rate for kernel estimators with unconstrained

bandwidth matrices, is n−4/(d+6) and n−4/(d+8) for r = 1, 2. Theorem 3 extends these results

to arbitrary r.

So far we have only considered scalar functionals of the expected value and the variance

of D̂⊗rf . For completeness, the following theorem gives these quantities in their vector and

matrix form. This theorem is a generalization of the results obtained by Duong, Cowling,

Koch, and Wand (2008) for r = 1, 2 to arbitrary r.

Theorem 4. Suppose (A1)–(A3) hold. Then

E D̂⊗rf(x;H) = D
⊗rf(x) + 1

2m2(K)(Idr ⊗ vecT H)D⊗(r+2)f(x) +O(tr2H)1dr ,

Var D̂⊗rf(x;H) = n−1|H|−1/2(H−1/2)⊗rR(D⊗rK)(H−1/2)⊗rf(x) + o(n−1|H|−1/2 trr H−1)Jdr ,

where the elements of 1p ∈ Rp and Jp ∈ Mp×p are all ones.

3 Normal mixture densities

In this section we study the normal mixture case in detail. We start with K = φ as

the density of the standard d-variate normal, φ(x) = (2π)−d/2 exp(−xTx/2), and with

f = φΣ(· − µ) a normal density with mean µ and variance Σ.

The MISE and AMISE expressions in the normal case are closely related to the moments

of quadratic forms in normal variables. Given two symmetric matricesA andB inMd×d, we

write µr,s(A,B) ≡ E[(zTA−1z)r(zTB−1z)s] and µr(A) ≡ µr,0(A, I), where z is a d-variate

random vector with standard normal distribution.
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Theorem 5. Suppose (A1) holds. Let f be a normal density with mean µ and variance Σ,

and K be the normal kernel. Then

MISE{D̂⊗rf(·;H)} = 2−(d+r)π−d/2
{
|Σ|−1/2µr(Σ) + n−1|H|−1/2µr(H)

+ (1− n−1)|H+Σ|−1/2µr(H+Σ)− 2(d+2r+2)/2|H+ 2Σ|−1/2µr(H+ 2Σ)
}
.

An explicit form of the minimizer of the MISE is not available.

To rewrite the MISE without the µr functionals, we use Theorem 1 in Holmquist (1996b)

to write

µr(A) = OF(2r)(vecT A−1)⊗r
Sd,2r(vec Id)

⊗r,

where OF(2r) = (2r− 1)(2r − 3) · · · 5 · 3 · 1 denotes the odd factorial and Sm,n ∈ Mmn×mn

is the symmetrizer matrix of order m,n; see Holmquist (1996a,b). These references contain

technical definitions of the symmetrizer matrix that we do not reproduce here. Instead,

we focus on the action of the symmetrizer matrix on Kronecker products of vectors. Let

xi ∈ Rp, i = 1, . . . n, and X∗ = {x∗
1, . . . ,x

∗
n} be a permutation of {x1, . . .xn}. The sym-

metrizer matrix maps the product
⊗n

i=1 xi to a linear combination of products of all possible

permutations of x1, . . . ,xn,

Sm,n

( n⊗

i=1

xi

)
=

1

n!

∑

all X∗

n⊗

i=1

x∗
i .

More explicitly for a 3-fold product, Sm,3(x1 ⊗x2 ⊗x3) =
1
6 [x1⊗x2 ⊗x3 +x1 ⊗x3⊗x2+

x2 ⊗ x1 ⊗ x3 + x2 ⊗ x3 ⊗ x1 + x3 ⊗ x1 ⊗ x2 + x3 ⊗ x2 ⊗ x1].

Corollary 1. Under the conditions of Theorem 5,

MISE{D̂⊗rf(·;H)} = 2−(d+r)π−d/2OF(2r)
{
|Σ|−1/2(vecT Σ−1)⊗r + |H|−1/2(vecT H−1)⊗r

+ (1− n−1)|H+Σ|−1/2(vecT (H+Σ)−1)⊗r

− 2(d+2r+2)/2|H+ 2Σ|−1/2(vecT (H+ 2Σ)−1)⊗r
}
Sd,2r(vec Id)

⊗r.

This corollary shows the explicit dependence of the MISE on the bandwidth matrix H.

However, the direct computation of Sd,2r ∈ Md2r×d2r may be an onerous task; for example,

for d = r = 4, S4,8 is a 65536 × 65536 matrix. In contrast, although Theorem 5 does not

express the explicit dependence of the MISE on H due to the use of the µr functionals,

formula (6) in Holmquist (1996b) gives the computationally efficient recursive expression

µr(A) = (r − 1)! 2r−1
r−1∑

j=0

tr
(
A−(r−j)

)

j! 2j
µj(A). (3)

Here, we understand A−p = (A−1)p for p > 0 and, consequently, A0 = Id.

An analogous expression of the AMISE is given below. In this case, we can also give an

explicit expression for its minimizer.
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Theorem 6. Under the conditions of Theorem 5,

AMISE{D̂⊗rf(·;H)} = 2−(d+r)π−d/2
{
n−1|H|−1/2µr(H) + 1

16 |Σ|−1/2µr,2(Σ,Σ1/2H−1Σ1/2)
}
.

The value of H that minimizes this function is

HAMISE =

(
4

d+ 2r + 2

)2/(d+2r+4)

Σn−2/(d+2r+4).

The AMISE expression in Theorem 6 can be rewritten without µr functionals. From

Theorem 5 in Holmquist (1996b),

µr,s(A,B) = OF(2r + 2s)[(vecT A−1)⊗r ⊗ (vecT B−1)⊗s]Sd,2r+2s(vec Id)
⊗(r+s).

Corollary 2. Under the conditions of Theorem 5,

AMISE{D̂⊗rf(·;H)} = 2−(d+r)π−d/2
{
OF(2r)n−1|H|−1/2(vecT H−1)⊗r

Sd,2r(vec Id)
⊗r

+ 1
16 |Σ|−1/2OF(2r + 4)[(vecT Σ−1)⊗r ⊗ {vecT (Σ−1/2HΣ−1/2)}⊗2]

× Sd,2r+4(vec Id)
⊗(r+2)

}
.

To facilitate the comparison of the extra amount of smoothing induced for higher di-

mensions and higher derivatives for standard normal densities, we examine the ratio

hAMISE(d, r, n)

hAMISE(1, 0, n)
=

(
3

4

)1/5( 4

d+ 2r + 2

)1/(d+2r+4)

n(d+2r−1)/(5d+10r+20)

where HAMISE(d, r, n) = h2AMISE(d, r, n)Id is the AMISE-optimal bandwidth for the stan-

dard normal density given d, r and n. These values are tabulated in Table 1 for d = 1, 2, . . . , 6

and r = 0, 1, 2, 3. These ratios are the same for different d and r if d+ 2r is fixed.

The normal scale bandwidth selector is obtained by replacing the variance Σ in HAMISE

from Theorem 6 by an estimate Σ̂,

ĤNS =

(
4

d+ 2r + 2

)2/(d+2r+4)

Σ̂n−2/(d+2r+4). (4)

We can use (4) as a starting point to develop consistent data-driven bandwidth matrices.

Consistent univariate selectors for density derivatives include the unbiased cross validation

selector of Härdle, Marron and Wand (1990), and the selector of Wu (1997) and Wu and

Lin (2000). The performance of the multivariate versions of these selectors is yet to be

established and we do not pursue this further here.

We now consider general normal mixture densities f(x) =
∑k

ℓ=1wℓφΣℓ
(x − µℓ) where

wℓ > 0 and
∑k

ℓ=1 wℓ = 1. Normal mixture densities are widely employed in simulation

studies since they provide a rich class of densities with tractable exact squared error ex-

pressions. Normal mixture densities were used in early attempts for data-based bandwidth
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d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

n = 1000 r = 0 1.00 1.19 1.36 1.51 1.64 1.76

r = 1 1.36 1.51 1.64 1.76 1.86 1.96

r = 2 1.64 1.76 1.86 1.96 2.04 2.12

r = 3 1.86 1.96 2.04 2.12 2.19 2.26

n = 10 000 r = 0 1.00 1.28 1.55 1.79 2.01 2.21

r = 1 1.55 1.79 2.01 2.21 2.40 2.56

r = 2 2.01 2.21 2.40 2.56 2.71 2.85

r = 3 2.40 2.56 2.71 2.85 2.98 3.10

n = 100 000 r = 0 1.00 1.39 1.77 2.13 2.47 2.79

r = 1 1.77 2.13 2.47 2.79 3.08 3.35

r = 2 2.47 2.79 3.08 3.35 3.60 3.84

r = 3 3.08 3.35 3.60 3.84 4.05 4.25

Table 1: Comparison of extra smoothing induced for higher dimensions and higher or-

der derivatives for a standard normal density. Each table entry contains the value of

hAMISE(d, r, n)/hAMISE(1, 0, n).

selection for multivariate kernel density estimation, see Ćwik and Koronacki (1997). They

proposed a 2-step procedure: (i) a preliminary normal mixture is fitted to the data and

(ii) the MISE- and AMISE-optimal bandwidths are computed from the closed form expres-

sions for the MISE and AMISE for this normal mixture fit. We provide MISE and AMISE

expressions for density derivatives to provide the basis for an analogous selector.

Theorem 7. Suppose (A1) holds, that f is the normal mixture density
∑k

ℓ=1 wℓφΣℓ
(·−µℓ),

and that K is the normal kernel. Then

MISE{D̂⊗rf(·;H)} = 2−rn−1(4π)−d/2|H|−1/2µr(H) +wT {(1− n−1)Ω2 − 2Ω1 +Ω0}w,

where w = (w1, w2, . . . , wk)
T and Ωa ∈ Mk×k with (ℓ, ℓ′) entry given by (Ωa)ℓ,ℓ′ = (−1)r

(vecT Idr)D
⊗2rφaH+Σℓℓ′

(µℓℓ′), with µℓℓ′ = µℓ − µℓ′ , Σℓℓ′ = Σℓ +Σℓ′. Then

MISE{D̂⊗rf(·;H)} = 2−rOF(2r)n−1(4π)−d/2|H|−1/2(vecT H−1)⊗r
Sd,2r(vec Id)

⊗r

+wT {(1 − n−1)Ω2 − 2Ω1 +Ω0}w,

where

(Ωa)ℓ,ℓ′ = (−1)rφaH+Σℓℓ′
(µℓℓ′)(vec

T (aH+Σℓℓ′)
−2)⊗r

Sd,2r

×

r∑

j=0

(−1)jOF(2j)

(
2r

2j

)[
µ
⊗(2r−2j)
ℓℓ′ ⊗ (vec(aH+Σℓℓ′))

⊗j
]
.

Theorem 7 is the analogue of Theorem 1 in Wand and Jones (1993). The following

AMISE formula is the analogue of Theorem 1 in Wand (1992).
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Theorem 8. Under the conditions of Theorem 7,

AMISE{D̂⊗rf(·;H)} = 2−rn−1(4π)−d/2|H|−1/2µr(H) + 1
4w

T Ω̃w

where Ω̃ ∈ Mk×k with (ℓ, ℓ′) entry given by Ω̃ℓ,ℓ′ = (−1)r vecT
(
Idr ⊗ (vecH vecT H)

)

D
⊗2r+4φΣℓℓ′

(µℓℓ′), with µℓℓ′ = µℓ − µℓ′, Σℓℓ′ = Σℓ +Σℓ′. Then

AMISE{D̂⊗rf(·;H)} = 2−rOF(2r)n−1(4π)−d/2|H|−1/2(vecT H−1)⊗r
Sd,2r(vec Id)

⊗r + 1
4w

T Ω̃w,

where

Ω̃ℓ,ℓ′ = (−1)rφΣℓℓ′
(µℓℓ′)

[
(vecT Σ−2

ℓℓ′ )
⊗r ⊗ (vecT (Σ−1

ℓℓ′ HΣ−1
ℓℓ′ ))

⊗2
]

× Sd,2r+4

r+2∑

j=0

(−1)jOF(2j)

(
2r + 4

2j

)[
µ
⊗(2r−2j+4)
ℓℓ′ ⊗ (vecΣℓℓ′)

⊗j
]
.

For r = 0, Theorem 8 gives AMISE{f̂(·;H)} = n−1(4π)−d/2|H|−1/2 + 1
4w

T Ω̃w with

Ω̃ℓ,ℓ′ = φΣℓℓ′
(µℓℓ′)(vec

T (Σ−1
ℓℓ′ HΣ−1

ℓℓ′ ))
⊗2

Sd,4[µ
⊗4
ℓℓ′ − 6µ⊗2

ℓℓ′ ⊗ vecΣℓℓ′ + 3(vecΣℓℓ′)
⊗2]. This

appears to be completely different, though equivalent to, than Theorem 1 in Wand (1992).

4 Asymptotic relative efficiency

We examine the gain in density estimation performance when using the added flexibility

of unconstrained selectors. The usual measure of asymptotic performance is the minimal

achievable AMISE. We compare this minimal AMISE for these parametrization classes: F

is the class of all positive-definite matrices, D is the class of all positive-definite diagonal

matrices, and I is the class of positive scalar multiples of the identity matrix. We consider

f to be a single normal density to simplify the mathematical analysis.

Corollary 3. Suppose the conditions of Theorem 5 hold. For the class of unconstrained

bandwidth matrices F ,

min
H∈F

AMISE(H) = 2−(d+r+4)28/(d+2r+4)π−d/2(d+ 2r + 4)(d + 2r + 2)(d+2r)/(d+2r+4)

× |Σ|−1/2µr(Σ)n−4/(d+2r+4).

The asymptotic rate of convergence of the minimal achievable AMISE was previously

stated in Theorem 3 for general f . This corollary provides its constants when f is a single

normal density, generalizing the result from Wand and Jones (1995, p. 112) to general r.

Corollary 4. Suppose the conditions of Theorem 5 hold. For the class I, H = h2Id,

AMISE(H) = 2−(d+r)π−d/2{n−1h−d−2rµr(Id) +
1
16 |Σ|−1/2µr+2(Σ)h4}.
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The bandwidth that minimizes the AMISE is HAMISE = h2AMISEId, where

hAMISE =

(
4(d + 2r)|Σ|1/2µr(Id)

µr+2(Σ)n

)1/(d+2r+4)

.

The minimal achievable AMISE is

min
H∈I

AMISE(H) = 2−(d+r+4)28/(d+2r+4)π−d/2
{
|Σ|−(d+2r)/2µr+2(Σ)d+2rµr+1(Id)

4
}1/(d+2r+4)

× (d+ 2r + 4)(d + 2r)−1n−4/(d+2r+4).

Comparing this corollary to the previous one, the rate of AMISE convergence does not

depend on the parametrization class. The difference in finite sample performance is due to

the different coefficients of the minimal AMISE. The gain in density estimation efficiency

using an unconstrained bandwidth matrix over constrained bandwidths was established in

the bivariate case by Wand and Jones (1993). Their main measure of this gain is the

Asymptotic Relative Efficiency

ARE(F : D) =

[
min
H∈F

AMISE(H)/ min
H∈D

AMISE(H)

](d+2r+4)/4

.

The interpretation of ARE(F : D) is that, for large n, the minimum error using n observa-

tions with a diagonal bandwidth can be achieved using only ARE(F : D)× n observations

with an unconstrained H. Analogous definitions and interpretations apply to ARE(F : I)

and ARE(D : I).

Computing these AREs analytically for general densities is mathematically intractable,

so we focus on the case where f is a normal density, making use of Corollaries 3 and 4.

Corollary 5. Suppose the conditions of Theorem 5 hold. Then

ARE(F : I) = [(d+ 2r + 2)(d + 2r)](d+2r)/4|Σ|−1/2µr(Σ)(d+2r+4)/4µr+2(Σ)−(d+2r)/4µr(Id)
−1.

Corollary 6. Suppose the conditions of Theorem 5 hold, and that f is a bivariate normal

density function having variances equal and with correlation coefficient ρ. Then

ARE(F : D) = ARE(F : I) = [4(r + 2)(r + 1)](r+1)/2 (1− ρ2)1/2Q(r, ρ)(r+3)/2

Q(r, 0)Q(r + 2, ρ)(r+1)/2

where

Q(r, ρ) =

r∑

j=0

j∑

j′=0

(
r

j

)(
j

j′

)
(−2ρ)j−j′mj+j′m2r−j−j′

and mk = 1
2{(−1)k + 1}OF(k) for k = 0, 1, 2, . . ..

In Figure 1, we compare the AREs for four families of bivariate normal densities with

mean zero, marginal variances σ2
1 , σ

2
2 , and correlation coefficient ρ ranging from –1 to +1.
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σ1 = 1, σ2 = 1 σ1 = 1, σ2 = 2

σ1 = 1, σ2 = 5 σ1 = 1, σ2 = 10

Figure 1: Each family of target densities is a normal density with marginal variances σ1

and σ2, and correlation coefficient ρ. The black curves are ARE(F : D), the grey curves

ARE(F : I). For σ1 = σ2 the two AREs coincide. The derivatives are: r = 0 (solid), r = 1

(short dashed), r = 2 (dotted), r = 3 (dot-dashed), r = 4 (long dashed).

Without loss of generality, σ1 = 1, and we let σ2 = 1, 2, 5, 10. For each value of ρ, we

compute ARE(F : D) numerically and ARE(F : I) analytically. The former are plotted

as the black curves, and the latter as grey curves. We consider derivatives of order r =

0, 1, . . . , 4 which are drawn in the solid, short dashed, dotted, dot-dashed and long dashed

lines respectively. This figure generalizes the plots in Wand and Jones (1993). Note that,

apart from equal marginal variances σ1 = σ2 with weak correlation, ARE(F : I) is close to

zero, indicating that the class I is inadequate for moderate to high correlation. Another
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observed feature is that the rate that both AREs tend to zero, as |ρ| tends to 1, increases as

the derivative order increases. This indicates that the gain from unconstrained bandwidths

for higher derivatives exceeds the known gain for r = 0 (Wand and Jones (1993)).

5 Numerical study

We conducted a numerical simulation study to compare the finite sample performance

for unconstrained and constrained bandwidths. We used the normal scale selector ĤNS,

labelled NSF and NSD, where the ‘F’ and ‘D’ denote the F and D parametrization classes

defined at the beginning of Section 4, respectively. In the ks library in R, the functions

Hmise.mixt() and Hamise.mixt() compute unconstrained minimizers of the MISE and

AMISE (from Theorems 7 and 8). Their constrained versions are Hmise.mixt.diag() and

Hamise.mixt.diag(). To compute the normal scale selectors, we took a zero mean and

the sample variance as the inputs to these R functions. For each replicate, we computed

the Integrated Squared Error (ISE) between the resulting kernel density estimate and the

target density. The ISE of the normal mixture density f(x) =
∑k

j=1wjφΣj
(x−µj) has the

explicit form

ISE(H) =

∫

Rd

[D̂⊗rf(x;H)− D
⊗rf(x)]T [D̂⊗rf(x;H)−D

⊗rf(x)]dx

= (−1)r(vecT Idr)

[
n−2

n∑

i=1

n∑

j=1

D
⊗2rφ2H(Xi −Xj)− 2n−1

n∑

i=1

k∑

j=1

wjD
⊗2r
H+Σj

(Xi − µj)

+
k∑

i=1

k∑

j=1

wiwjD
⊗2r
Σi+Σj

(µi − µj)

]
. (5)

5.1 Bivariate target densities

We took sample sizes n = 100 and n = 1000 for derivative orders r = 0, 1, 2, and each

selector was computed on 100 replicates. The target densities we investigated are taken

from Chacón (2009), with their original names and numbering, cover a wide range of density

shapes, as shown in Figure 2. Target density #1 is a normal density and can be considered

a base case. Density #2 is a correlated normal, densities #7 and #11 are multimodal, with

varying degrees of intricate structure.

The box plots of the ISE of the 100 replicates for each target density, sample size n, and

derivative order r, are displayed in Figure 3. As expected, unconstrained selectors make

minimal gains for density #1 since most of its probability mass is oriented parallel to the

co-ordinate axes. For density #7, NSF is detrimental compared to NSD. For n = 1000,

typical bandwidths were

HAMISE =

[
0.056 0.034

0.034 0.056

]
, ĤNSD =

[
0.108 0

0 0.108

]
, ĤNSF =

[
0.144 −0.073

−0.073 0.144

]
.



15

#1 Uncorrelated Normal

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

#2 Correlated Normal

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

#7 Separated Bimodal

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

#11 Double Fountain

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2: Contour plots for the four target densities.

According the AMISE selector, the kernel should be positively correlated, with ρ = 0.60.

This is natural in view of the shape of density #7. The NSD selector gives uncorrelated

kernels by construction, whereas the fact that the overall correlation coefficient of density #7

is negative makes the NSF select a kernel with negative correlation (ρ = −0.51), thus

resulting in higher ISEs than with the diagonal selector. This shows that the normal

scale is a poor surrogate in this case. For densities #2 and #11, NSF shows the most

improvement. We conclude that these mixed results are not due to the inherent inadequacy

of unconstrained as compared to diagonal selectors, but rather due to confounding with

the crudeness of normal scale selectors. This serves as motivation to develop unconstrained

versions of ‘hi-tech’ selectors in the future.

5.2 Multivariate target densities

For a multivariate study, we generalized density #2: a correlated normal density for di-

mensions d = 2, 3, 4, with zero mean, variances one, and correlations 0.9. We took sample

size n = 100, derivative orders r = 0, 1, 2, 3, with 500 replicates. From Figure 4, for this

correlated normal density, there is a uniform decrease in the ISE for the unconstrained

parametrization. For a fixed dimension d, the gain in performance decreases as the deriva-

tive order r increases. On the other hand, for a fixed order r, the gain in performance
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Figure 3: ISE box plots to compare the performance of diagonal and unconstrained

parametrizations of normal scale selectors for bivariate densities. There are four target

densities, sample sizes n = 100, 1000 and derivative orders r = 0, 1, 2.
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increases as d increases.
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Figure 4: ISE box plots to compare the performance of diagonal and unconstrained

parametrizations of normal scale selectors for multivariate correlated normal densities,

d = 2, 3, 4. The sample size is n = 100, and the derivative orders are r = 0, 1, 2, 3.

6 Application: high-throughput flow cytometry

Flow cytometry is a method by which multiple characteristics of single cells or other particles

are simultaneously measured as they pass through a laser beam in a fluid stream (Shapiro

(2003)). The last few years have seen a major change in technology toward what has

become known as high-throughput (or high-content) flow cytometry (e.g. Le Meur et al.

(2007)). This technology combines robotic fluid handling, flow cytometric instrumentation,

and bioinformatics software so that relatively large numbers of cells can be processed and

analyzed in a short period of time. With such massive amounts of data, there is a high

premium on good automatic methods for pre-processing and extraction of clinically relevant

information.

Figure 5 is a subset of data from the flow cytometry experiment described in Brinkman

et al. (2007). The left panel is cellular fluorescence measurements – corresponding to an-

tibodies CD4 and CD8β, after gating on CD3-positive cells – on a patient who develops

graft-versus-host disease. The right panel corresponds to a control. The data were collected
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Figure 5: Cellular fluorescence measurements, after undergoing the arcsinh transformation,

corresponding to antibodies CD4 and CD8β after subsetting on CD3-positive cells. The

left panel is data from a patient who develops graft-versus-host disease. The right panel is

data from a control patient. Further details about the data are given in Brinkman et al.

(2007). The shapes correspond to significant negative density curvature regions using the

methodology of Duong, Cowling, Koch, and Wand (2008) with the bandwidth chosen via

the normal scale rule (4).

32 days after each patient had a blood and marrow transplant. The goal is to identify cell

populations that differ between control and disease groups and, hence, constitute valid dis-

ease biomarkers, e.g. CD4-positive, CD8β-positive, CD3-positive; where ‘positive’ indicates

fluorescence of the relevant antibody above a threshold. The shapes in Figure 5 correspond

to regions of high significant negative curvature based on the methodology of Godtliebsen,

Marron, and Chaudhuri (2002) and refined by Duong, Cowling, Koch, and Wand (2008).

The bandwidth matrix is chosen according to the normal scale rule (4) with d = r = 2:

ĤNS = (1/2)1/5Σ̂n−1/5, (6)

where Σ̂ is the sample variance. Since the normal density is close to being the density

which gives the largest optimal amount of smoothing given a fixed variance for density es-

timation (Terrell (1990)), (6) corresponds approximately to the largest bandwidth matrix

which should be considered for curvature estimation. The absence of significant curvature

for CD4-positive and CD8β-positive cells in the control patient, despite use of this maxi-

mal bandwidth, represents an important clinical difference and gives rise to useful cellular
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signatures for graft-versus-host disease. Using the r = 0 normal scale rule, as illustrated in

Table 1, could lead to insufficient smoothing for large sample sizes. In more comprehensive

analyses of these data, described in Naumann and Wand (2009), more sophisticated filters

for identifying cellular signatures are employed. The normal scale rule for second derivative

estimation plays an important role in the initial phases of these filters, identifying candidate

modal regions of possible interest. The plots in Figure 5 were computed using the R library

feature whose main function uses (6) as the upper limit on the default bandwidth matrix

range.

7 Discussion

Kernel smoothing is a widely used non-parametric method for multivariate density esti-

mation. It has the potential to be as equally successful for density derivative estimation.

The relative lack of theoretical development for density derivatives compared to densities

has hindered this progress. One obstacle is the specification of higher order derivatives.

By writing the rth order array of rth order differentials as an r-fold Kronecker product of

first order differentials, we maintain an intuitive, systematic vectorization of all derivatives.

This allows the derivation of such quantities as the MISE and AMISE for kernel density

estimators for general derivatives.

The single most important factor in the performance of kernel estimators is the choice

of the bandwidth. For density estimation, there is now a solid body of work for reliable

bandwidth matrix selection. Using the theoretical simplifications afforded by our vector

form derivatives, we can write down an unconstrained data-driven selector based on nor-

mal scales. These normal scale selectors facilitate the quantification of the possible gain in

performance in using the unconstrained bandwidth matrices compared to more constrained

parametrizations. These selectors are a starting point from which more advanced uncon-

strained bandwidth selectors can be now developed, and for the second derivative, they are

a starting point from which to estimate modal regions.
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A Appendix: Proofs

A.1 Proof of the results in Section 2

A.1.1 Proof of Theorem 1

Proof of Theorem 1. First notice that we can write ED̂⊗rf(x;H) = D
⊗rKH ∗ f(x) = KH ∗

D
⊗rf(x). Therefore,

∫
B2(x;H)dx =

∫
‖KH ∗ D⊗rf(x)− D

⊗rf(x)‖2dx

= trR(D⊗rf) + trRK∗K,H,r(f)− 2 trRK,H,r(f),

as it is not difficult to check that
∫
KH ∗D⊗rf(x)KH ∗D⊗rf(x)Tdx = RK∗K,H,r(f). About

the variance term, it is clear that

∫
V(x;H)dx = n−1

∫
E‖D⊗rKH(x−X1)‖

2dx− n−1

∫
‖ED⊗rKH(x−X1)‖

2dx. (7)

The second integral in the right side is easily recognized as RK∗K,H,r(f) also, and for the

first one we have
∫

E‖D⊗rKH(x−X1)‖
2dx = tr

∫∫
D
⊗rKH(x− y)D⊗rKH(x− y)T f(y)dxdy

= tr

∫
D
⊗rKH(x)D⊗rKH(x)Tdx

= tr
[
(H−1/2)⊗r

∫
(D⊗rK)H(x)(D⊗rK)H(x)T dx(H−1/2)⊗r

]

= tr
[
(H−1)⊗r|H|−1/2

∫
D
⊗rK(z)D⊗rK(z)T dz

]

= |H|−1/2 tr
(
(H−1)⊗rR(D⊗rK)

)
.

A.1.2 Proof of Theorem 2

Notice that, for a function f : Rd → Rp such that every element in D
⊗qf(x) is piecewise

continuous, we can write its Taylor polynomial expansion as

f(x+ h) =

q∑

r=0

1

r!

[
Ip ⊗ (hT )⊗r

]
D
⊗rf(x) + o(‖h‖q)1p, x,h ∈ R

d.

See Baxandall and Liebeck (1986, p. 164). The proof of Theorem 2 then follows from

Lemmas 1 and 2 below, together with the bias-variance decomposition of the MSE.

Write IB2(H) =
∫
B2(x;H)dx and IV(H) =

∫
V(x;H)dx as the integrated squared

bias and integrated variance of the kernel estimator, respectively, so that MISE(H) =

IB2(H) + IV(H).
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Lemma 1. Suppose (A1)–(A3) hold. Then

IB2(H) = m2(K)2

4 tr
[
(Idr ⊗ vecT H)R(D⊗(r+2)f)(Idr ⊗ vecH)

]
+ o(tr2H)

Proof. We can write ED̂⊗rf(x;H) =
∫
K(z)D⊗rf(x−H1/2z)dz. Now, make use of a Taylor

expansion to get

D
⊗rf(x−H1/2z) = D

⊗rf(x)−
[
Idr ⊗ (zTH1/2)

]
D
⊗(r+1)f(x)

+ 1
2

[
Idr ⊗ (zTH1/2)⊗2

]
D
⊗(r+2)f(x) + o(trH)1dr .

Substitute this in the previous formula and use (A3) to obtain

B(x;H) = m2(K)
2

∥∥[Idr ⊗ {(vecT Id)(H
1/2)⊗2}

]
D
⊗(r+2)f(x) + o(trH)

∥∥

= m2(K)
2

∥∥(Idr ⊗ vecT H
)
D
⊗(r+2)f(x) + o(trH)

∥∥.

We finish the proof by squaring and integrating the previous expression, taking into account

(A2).

Lemma 2. Suppose (A1) holds. Then

IV(H) = n−1|H|−1/2 tr
(
(H−1)⊗rR(D⊗rK)

)
+ o(n−1|H|−1/2 trr(H−1)).

Proof. From the proof of Theorem 1 and the arguments in the previous lemma, we have

∫
V(x;H)dx = n−1

∫
E‖D⊗rKH(x−X1)‖

2dx+O(n−1)

= n−1|H|−1/2 tr
(
(H−1)⊗rR(D⊗rK)

)
+ o(n−1|H|−1/2 trr(H−1)).

A.1.3 Proof of Theorem 3

Proof. Similar to the decomposition MISE(H) = IB2(H)+IV(H), we can write AMISE(H) =

AIB2(H) + AIV(H), where AIB2(H) and AIV(H) are the leading terms of IB2(H) and

IV(H), respectively, from Lemmas 1 and 2.

Let Kr,s ∈ Mrs×rs be the commutation matrix of order r, s; see Magnus and Neudecker

(1979). The commutation matrix allows us to commute the order of the matrices in a

Kronecker product, e.g., if A ∈ Mn×r and B ∈ Mm×s, then Km,n(A⊗B)Kr,s = B⊗A.

To determine the derivative, we first find the differentials. Differentials of a function

f : Rd → Rp have the advantage that they are always the same dimension as f itself, as

opposed to derivatives whose dimension depends on the order of the derivative. So higher

order differentials are easier to manipulate. The first identification theorem of Magnus and

Neudecker (1999, p. 87) states if the differential of f(y) can be expressed as df(y) = A(y)y



22

for some matrix A(y) ∈ Mp×d then the derivative is Df(y) = A(y). The differential of

AIB2(H) is

dAIB2(H) = m2(K)2

4 (vecT R(D⊗(r+2)f))K⊗2
dr ,d2

[(Kdr+2,d2 ⊗ Idr) + Id2r+4 ]

× (Id2 ⊗ vecH⊗ vec Idr)d vecH

since

d vec{Idr ⊗ (vecH vecT H)} = d vec[Kdr ,d2{(vecH vecT H)⊗ Idr}Kd2,dr ]

= (Kdr ,d2 ⊗Kdr ,d2)d vec{(vecH vecT H)⊗ Idr}

= K⊗2
dr ,d2

[(Kdr+2,d2 ⊗ Idr) + Id2r+4 ](Id2 ⊗ vecH⊗ vec Idr)d vecH

where the last line follows by using a similar reasoning to determine Equation (11) in the

proof of Theorem 2 in Chacón and Duong (2010).

The differential of AIV(H) is

dAIV(H) = −
{

1
2AIV(H)(vecT H−1) + n−1|H|−1/2(vecT R(D⊗rK))(H−1)⊗2r

×Λr[(Idr−1 ⊗Kd,dr−1)(vecH⊗(r−1) ⊗ Id)⊗ Id]
}
d vecH

where Λr =
∑r

i=1 K
⊗2
di,dr−i . The reasoning follows similar lines to computing Equations (9)

and (10) in the proof of Theorem 2 in Chacón and Duong (2010).

Let every entry of H be O(n−β) for β > 0. Then dAIV(H) = O(nβ(d/2+r+1)−1) d vecH

and dAIB2(H) = O(n−β) d vecH. Equating powers gives β = 2/(d + 2r + 4) and thus

dAMISE(H) = O(n−2/(d+2r+4)) d vecH. The optimal H is a solution of the equation

∂AMISE(H)/(∂ vecH) = 0, so all its entries are O(n−2/(d+2r+4)), which implies that

minHAMISE(H) = O(n−4/(d+2r+4)).

A.1.4 Proof of Theorem 4

The proof follows directly from Lemmas 1 and 2.

Proof. From Lemma 1, E D̂⊗rf(x;H) = D
⊗rf(x) + m2(K)

2 (Idr ⊗ vecT H)D⊗(r+2)f(x)[1 +

O(trH)]. For the variance, we have

Var D̂⊗rf(x;H) = n−1
D
⊗rKHD

⊗rKT
H ∗ f(x)− n−1[KH ∗ D⊗rf(x)][KH ∗ D⊗rf(x)T ].

From Lemma 2, the convolution in the first term dominates the convolution in the second

term since the value of the former is

D
⊗rKHD

⊗rKT
H ∗ f(x) = |H|−1/2(H−1/2)⊗rR(D⊗rK)(H−1/2)⊗rf(x)[1 + o(1)]

and the proof is complete.
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A.2 Proof of the results in Section 3

The proofs in Sections A.2.1 and A.2.2 assume, without loss of generality, that f = φΣ.

Results for the general normal density f = φΣ(· − µ) remain valid since they are invariant

under this translation.

A.2.1 Proof of Theorem 5

The proof of Theorem 5 is based on the exact formula given in Theorem 1. Notice that,

in the normal case, we have Rφ∗φ,H,r(φΣ) = Rφ,2H,r(φΣ) and R(D⊗rφΣ) = Rφ,0,r(φΣ), so

that it follows that all we need to have an explicit expression for the MISE function in the

normal case is an explicit formula for trRφ,H,r(φΣ) and tr
(
(H−1)⊗rR(D⊗rφ)

)
. These are

provided in the following lemma.

Lemma 3. For any symmetric positive definite matrix H we have

i) Rφ,H,r(φΣ) = 2d/2+rR(D⊗rφH+2Σ).

ii) tr
(
(H−1)⊗rR(D⊗rφΣ)

)
= 2−(d+r)π−d/2|Σ|−1/2µr(Σ

1/2HΣ1/2).

From i) and ii) we obtain

iii) trRφ,H,r(φΣ) = (2π)−d/2|H+ 2Σ|−1/2µr(H+ 2Σ).

iv) tr
(
(H−1)⊗rR(D⊗rφ)

)
= 2−(d+r)π−d/2µr(H).

Proof. i) Reasoning as in Chacón and Duong (2010), it is easy to check that

vecR(D⊗rφΣ) = (−1)rD⊗2rφ2Σ(0) = (−1)r2−(d/2+r)
D
⊗2rφΣ(0).

With this in mind, an element-wise application of some of the results in Appendix C of

Wand and Jones (1995) leads to

vecRφ,H,r(φΣ) = vec

∫

Rd

(φH ∗D⊗rφΣ)(x)D
⊗rφΣ(x)

Tdx

= vec

∫

Rd

D
⊗rφH+Σ(x)D

⊗rφΣ(x)
Tdx

=

∫

Rd

D
⊗rφΣ(x)⊗ D

⊗rφH+Σ(x)dx

= (−1)r
∫

Rd

D
⊗2rφΣ(x)φH+Σ(x)dx

= (−1)rD⊗2rφH+2Σ(0)

= 2d/2+r vecR(D⊗rφH+2Σ),

which yields the result.



24

ii) Chacón and Duong (2010) also show that

vecR(D⊗rφΣ) = 2−(d+r)π−d/2OF(2r)|Σ|−1/2
Sd,2r(vecΣ

−1)⊗r. (8)

Moreover, it is not hard to check that the symmetrizer matrix satisfies Sd,2r vec[(H
−1)⊗r] =

Sd,2r(vecH
−1)⊗r. This is because (vecH−1)⊗r can be obtained form vec[(H−1)⊗r] by mul-

tiplying it by Kronecker products of commutation and identity matrices, and multiplication

of this kind of matrices by the symmetrizer matrix has no effect, as seen from part (iv)

of Theorem 1 in Schott (2003). Therefore, if z denotes a d-variate vector with standard

normal distribution and x = Σ−1/2z, then

tr
(
(H−1)⊗rR(D⊗rφΣ)

)
= vecT [(H−1)⊗r] vecR(D⊗rφΣ)

= 2−(d+r)π−d/2OF(2r)|Σ|−1/2 vecT [(H−1)⊗r]Sd,2r(vecΣ
−1)⊗r

= 2−(d+r)π−d/2OF(2r)|Σ|−1/2(vecT H−1)⊗r
Sd,2r(vecΣ

−1)⊗r

= 2−(d+r)π−d/2|Σ|−1/2
E[(xTH−1x)r]

= 2−(d+r)π−d/2|Σ|−1/2
E[(zTΣ−1/2H−1Σ−1/2z)r].

Here, the fourth line follows from Theorem 1 in Holmquist (1996b).

A.2.2 Proof of Theorem 6

The proof of Theorem 6 starts from the AMISE expression given in Theorem 2. The

term appearing in the asymptotic integrated variance was already computed in Lemma 3.

For the asymptotic integrated squared bias, it is clear that for the normal kernel we have

m2(K) = 1. From (8) and the results in Holmquist (1996a) it follows that

vecR(D⊗rφΣ) = 2−(d+r)π−d/2|Σ|−1/2(Σ−1/2)⊗2r
E[z⊗2r],

with z a d-variate standard normal random vector. Or, in matrix form,

R(D⊗rφΣ) = 2−(d+r)π−d/2|Σ|−1/2(Σ−1/2)⊗r
E[(zzT )⊗r](Σ−1/2)⊗r.

Therefore, using (Σ−1/2⊗Σ−1/2) vecH = vec(Σ−1/2HΣ−1/2) and some other matrix results

from Magnus and Neudecker (1999, p. 48), we come to

tr
[
(Idr ⊗ vecT H)R(D⊗(r+2)φΣ)(Idr ⊗ vecH)

]

= 2−(d+r+2)π−d/2|Σ|−1/2 tr
[{

(Σ−1)⊗r ⊗ (vecB vecT B)
}
E[(zzT )⊗(r+2)]

]
,

with B = Σ−1/2HΣ−1/2. Now, the trace in the right hand side can be written as

E tr
[
(Σ−1zzT )⊗r ⊗ {vecB vecT B(zzT )⊗2}

]
= E

[
trr(Σ−1zzT ) tr{vecB vecT (zzTBzzT )}

]

= E

[
(zTΣ−1z)r{vecT (zzTBzzT ) vecB}

]

= E

[
(zTΣ−1z)r(zTBz)2

]
.
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This yields the proof for the AMISE formula.

If we evaluate the AMISE formula in Theorem 6 at H = cΣ for some c > 0, we obtain

AMISE(cΣ) = 2−(d+r)π−d/2|Σ|−1/2
{
n−1c−(d+2r)/2µr(Σ) + 1

16c
2µr,2(Σ, Id)

}
.

But we show below that

µr,2(Σ, Id) = (d+ 2r + 2)(d + 2r)µr(Σ), (9)

leading to

AMISE(cΣ) = 2−(d+r)π−d/2|Σ|−1/2µr(Σ)
{
n−1c−(d+2r)/2 + 1

16c
2(d+ 2r + 2)(d + 2r)

}
;

this function is minimized by setting

c =

(
4

(d+ 2r + 2)n

)2/(d+2r+4)

.

Therefore, to finish the proof the only thing left is to show (9).

This task, however, is harder than it may seem at first sight. It is relatively easy if

Σ = Id because, in this case, it suffices to show that µr+1(Id) = (d + 2r)µr(Id), which is

an immediate consequence of the recursive formula (3). Therefore, to show (9) we need a

recursive formula similar to (3), but for the joint moments µr,s(A,B). To that end, we first

derive a technical lemma.

Lemma 4. Consider gα(t) ≡ gα(t;A,B,C) = tr
[
{B(C + tA)−1}α

]
for suitable matrices

A,B,C and arbitrary α ∈ N. Then

g(p)α (t;A,B,C) = (−1)p
(α+ p− 1)!

(α− 1)!
tr
[
{A(C + tA)−1}p{B(C + tA)−1}α

]
,

so that g
(p)
α (0;A,B,C) = (−1)p (α+p−1)!

(α−1)! tr
[
(AC−1)p(BC−1)α

]
.

Proof. The result is proved by induction on p. For p = 1, noting that the differential of

B(C+ tA)−1 is d
[
B(C+ tA)−1

]
= −B(C+ tA)−1A(C+ tA)−1dt, we have

d tr
[
{B(C+ tA)−1}α

]
= tr d

[
{B(C + tA)−1}α

]

= tr

α∑

i=1

{B(C + tA)−1}i−1 · d
[
B(C + tA)−1

]
· {B(C + tA)−1}α−i

= − tr

α∑

i=1

{B(C + tA)−1}i ·A(C+ tA)−1 · {B(C + tA)−1}α−idt

= −α tr
[
A(C+ tA)−1{B(C + tA)−1}α

]
dt

and we are done. The case of arbitrary p follows from g
(p)
α (t) = d

dtg
(p−1)
α (t).
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Theorem 9. We can write

µr,s(A,B) =
r∑

i=0

s−1∑

j=0

(
r

i

)(
s− 1

j

)
(r+s−i−j−1)!2r+s−i−j−1 tr(A−(r−i)B−(s−j))µi,j(A,B).

Proof. For ease of notation we prove the result for µr,s(A
−1,B−1); that is, we show that,

for qA = zTAz and qB = zTBz with z a d-variate standard normal random vector,

E[qrAq
s
B] =

r∑

i=0

s−1∑

j=0

(
r

i

)(
s− 1

j

)
(r + s− i− j − 1)!2r+s−i−j−1 tr(Ar−iBs−j)E[qiAqj

B
].

It is well known that the joint moment generating function of qA and qB is

M(t1, t2) = E[et1qA+t2qB ] = |Id − 2t1A− 2t2B|−1/2,

see Magnus (1986). From that, we can write

E[qrAq
s
B] =

∂r+sM

∂tr1∂t
s
2

(0, 0),

so that all we need is to find a recursive formula for the partial derivatives of M . With the

notations of the previous lemma, it is easy to show that

∂M

∂t2
(t1, t2) = M(t1, t2) · g1(t2;−2B,B, Id − 2t1A).

This way, using the formulas for the derivatives of g1 and Leibniz formula for the derivatives

of a product,

∂sM

∂ts2
(t1, t2) =

∂s−1

∂ts−1
2

(
M(t1, t2) · g1(t2;−2B,B, Id − 2t1A)

)

=

s−1∑

j=1

(
s− 1

j

)
∂jM

∂tj2
(t1, t2) · g

(s−j−1)
1 (t2;−2B,B, Id − 2t1A)

=
s−1∑

j=1

(
s− 1

j

)
(s − j − 1)!2s−j−1 ∂

jM

∂tj2
(t1, t2) · tr

[
{B(Id − 2t1A− 2t2B)−1}s−j

]

=
s−1∑

j=1

(s − 1)!

j!
2s−j−1∂

jM

∂tj2
(t1, t2) · gs−j(t1;−2A,B, Id − 2t2B).

Now, if we compute the rth partial derivative with respect to t1 we have

∂r+sM

∂tr1∂t
s
2

(t1, t2) =

r∑

i=0

s−1∑

j=1

(
r

i

)
(s− 1)!

j!
2s−j−1∂

i+jM

∂ti1∂t
j
2

(t1, t2) · g
(r−i)
s−j (t1;−2A,B, Id − 2t2B)

Substituting (t1, t2) in this expression for (0, 0) and using again the previous lemma, we get

the desired formula.
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As a consequence of this result, we are able to prove formula (9).

Corollary 7. For any symmetric matrix A we have µr,2(A, Id) = (d+2r+2)(d+2r)µr(A).

Proof. First, notice that from the previous theorem, taking into account that A0 = Id,

µr,1(A, Id) =

r∑

i=0

(
r

i

)
(r − i)!2r−i tr(A−(r−i))µi,0(A, Id)

= dµr(A) +
r−1∑

i=0

r!

i!
2r−i tr(A−(r−i))µi(A)

= (d+ 2r)µr(A),

where the last equality follows from (3). Using this and Theorem 9,

µr,2(A, Id) =

r∑

i=0

1∑

j=0

(
r

i

)(
1

j

)
(r − i− j + 1)!2r−i−j+1 tr(A−(r−i))µi,j(A, Id)

=
r∑

i=0

[(
r

i

)
(r − i+ 1)!2r−i+1 tr(A−(r−i))µi,0(A, Id)

+

(
r

i

)
(r − i)!2r−i tr(A−(r−i))µi,1(A, Id)

]

=
r∑

i=0

[
r!

i!
(r − i+ 1)2r−i+1 tr(A−(r−i))µi(A) +

r!

i!
2r−i tr(A−(r−i))(d + 2i)µi(A)

]

=

r∑

i=0

r!

i!
[2(r − i+ 1) + d+ 2i]2r−i tr(A−(r−i))µi(A)

= (d+ 2r + 2)µr,1(A, Id)

= (d+ 2r + 2)(d+ 2r)µr(A).

A.2.3 Proof of Theorem 7

Proof. From the proof of Theorem 5, we have that for K = φ, Rφ∗φ,H,r(f) = Rφ,2H,r(f)

and R(D⊗rf) = Rφ,0,r(f). Combining this with Theorem 1 and part iv) of Lemma 3 we

come to

MISE{(D̂⊗rf(·;H)} = 2−rn−1(4π)−d/2|H|−1/2µr(H) + (1− n−1)̟2 − 2̟1 +̟0,

where ̟a = trRφ,aH,r(f) = (vecT Idr) vecRφ,aH,r(f). Now,

vecRφ,aH,r(f) = vec

∫
φaH ∗ D⊗rf(x)D⊗rf(x)T dx

=
k∑

ℓ,ℓ′=1

wℓwℓ′

∫
D
⊗rφΣℓ′

(x− µℓ′)(x)⊗ D
⊗rφaH+Σℓ

(x− µℓ)dx

=
k∑

ℓ,ℓ′=1

wℓwℓ′(−1)rD⊗2rφaH+Σℓ+Σℓ′
(µℓ − µℓ′),
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so that we can write ̟a = wTΩaw, where Ωa is the k × k matrix with (ℓ, ℓ′) entry given

by (Ωa)ℓ,ℓ′ = (−1)r(vecT Idr)D
⊗2rφaH+Σℓ+Σℓ′

(µℓ − µℓ′).

The second expression of (Ωa)ℓ,ℓ′ is derived from an identity in Holmquist (1996a),

D
⊗2rφΣ(µ) = φΣ(µ)(Σ

−1)⊗2r
Sd,2r

r∑

j=0

(−1)jOF(2j)

(
2r

2j

)(
µ⊗(2r−2j) ⊗ (vecΣ)⊗j

)
, (10)

with the use of (vecT Idr)(Σ
−1)⊗2r = vecT (Σ−2)⊗r.

A.2.4 Proof of Theorem 8

Proof. To determine the AMISE formula it suffices to find an expression for the asymptotic

integrated squared bias

AIB2(H) = 1
4 tr

[
(Idr ⊗ vecT H)R(D⊗(r+2)f)(Idr ⊗ vecH)

]

= 1
4 vec

T
(
Idr ⊗ (vecH vecT H)

)
vecR(D⊗(r+2)f).

We can write

vecR(D⊗(r+2)f) = vecRφ,0·H,r+2(f) =

k∑

ℓ,ℓ′=1

wℓwℓ′(−1)r+2
D
⊗2r+4φΣℓ+Σℓ′

(µℓ − µℓ′)

so that 4AIB2(H) = wT Ω̃w, with µℓℓ′ = µℓ − µℓ′ , Σℓℓ′ = Σℓ +Σℓ′ ,

Ω̃ℓ,ℓ′ = (−1)r vecT
(
Idr ⊗ (vecH vecT H)

)
D
⊗2r+4φΣℓℓ′

(µℓℓ′)

= (−1)rφΣℓℓ′
(µℓℓ′)

[
(vecT Id)

⊗r ⊗ (vecT H)⊗2
]
(Σ−1

ℓℓ′ )
⊗(2r+4)

Sd,2r+4

×

r+2∑

j=0

(−1)jOF(2j)

(
2r + 4

2j

)[
µ
⊗(2r−2j+4)
ℓℓ′ ⊗ (vecΣℓℓ′)

⊗j
]

= (−1)rφΣℓℓ′
(µℓℓ′)

[
(vecT Σ−2

ℓℓ′ )
⊗r ⊗ (vecT (Σ−1

ℓℓ HΣ−1
ℓℓ ))⊗2

]
Sd,2r+4

×
r+2∑

j=0

(−1)jOF(2j)

(
2r + 4

2j

)[
µ
⊗(2r−2j+4)
ℓℓ′ ⊗ (vecΣℓℓ′)

⊗j
]
,

using (10).
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A.3 Proof of the results in Section 4

A.3.1 Proof of Corollary 3

Proof. From Theorem 6, HAMISE = cAMISEΣ where cAMISE = {4/[(d+2r+2)n]}2/(d+2r+4) .

Substituting this into the equation immediately following below (9),

min
H∈F

AMISE(H) = 2−(d+r)π−d/2|Σ|−1/2µr(Σ)c2AMISE

[
n−1c

−(d+2r+4)/2
AMISE + 1

16 (d+ 2r + 2)(d + 2r)
]

= 2−(d+r)π−d/2|Σ|−1/2µr(Σ)

(
4

d+ 2r + 2

)4/(d+2r+4)

×
[
1
4(d+ 2r + 2) + 1

16(d+ 2r + 2)(d + 2r)
]
n−4/(d+2r+4)

= 2−(d+r+4)π−d/2(d+ 2r + 2)(d+ 2r + 4)

(
4

d+ 2r + 2

)4/(d+2r+4)

× |Σ|−1/2µr(Σ)n−4/(d+2r+4)

= 2−(d+r+4)28/(d+2r+4)π−d/2(d+ 2r + 4)(d + 2r + 2)(d+2r)/(d+2r+4)

× |Σ|−1/2µr(Σ)n−4/(d+2r+4).

A.3.2 Proof of Corollary 4

Proof. Substituting H = h2Id into the AMISE formula in Theorem 6,

AMISE(h2Id) = 2−(d+r)π−d/2{n−1h−d−2rµr(Id) +
1
16 |Σ|−1/2µr,2(Σ,Σ1/2(h−2Id)Σ

1/2)}

= 2−(d+r)π−d/2{n−1h−d−2rµr(Id) +
1
16 |Σ|−1/2µr+2(Σ)h4},

since µr,2(Σ,Σ) = µr+2(Σ). Differentiating with respect to h and setting to zero, −(d +

2r)n−1h−d−2r−1µr(Id) +
1
4 |Σ|−1/2µr+2(Σ)h3 = 0 gives

hAMISE =

(
4(d + 2r)|Σ|1/2µr(Id)

µr+2(Σ)n

)1/(d+2r+4)

.
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The minimal AMISE is

min
H∈I

AMISE(H)

= 2−(d+r)π−d/2h4AMISE{n
−1h−d−2r−4

AMISE + 1
16 |Σ|−1/2µr+2(Σ)}

= 2−(d+r)π−d/2

(
4(d+ 2r)|Σ|1/2µr(Id)

µr+2(Σ)

)4/(d+2r+4)
(

µr+2(Σ)

4(d+ 2r)|Σ|1/2
+

µr+2(Σ)

16|Σ|1/2

)

× n−4/(d+2r+4)

= 2−(d+r+4)π−d/2|Σ|−1/2µr+2(Σ)

(
d+ 2r + 4

d+ 2r

)(
4(d+ 2r)|Σ|1/2µr(Id)

µr+2(Σ)

)4/(d+2r+4)

× n−4/(d+2r+4)

= 2−(d+r+4)28/(d+2r+4)π−d/2(d+ 2r + 4)(d + 2r)−1

×
{
|Σ|−(d+2r)/2µr+2(Σ)d+2rµr+1(Id)

4
}1/(d+2r+4)

n−4/(d+2r+4),

since µr+1(Id) = (d+ 2r)µr(Id).

A.3.3 Proof of Corollary 5

Proof. From Corollaries 3 and 4, the ARE is

ARE(F : I) =
(d+ 2r + 2)(d+2r)/4|Σ|−(d+2r+4)/8µr(Σ)(d+2r+4)/4

(d+ 2r)−(d+2r+4)/4|Σ|−(d+2r)/8µr+2(Σ)(d+2r)/4µr+1(Id)

= [(d+ 2r + 2)(d + 2r)](d+2r)/4|Σ|−1/2µr(Σ)(d+2r+4)/4µr+2(Σ)−(d+2r)/4µr(Id)
−1

since µr+1(Id) = (d+ 2r)µr(Id).

A.3.4 Proof of Corollary 6

Proof. Let the variance be Σ = σ2Σρ where Σρ =

[
1 ρ

ρ 1

]
. With this form of the vari-

ance, using symmetry arguments, the bandwidth that minimizes the AMISE is of the form

HAMISE = cI2, for some positive constant c. So we can apply Corollary 5. Thus

ARE(F : D) = ARE(F : I)

= [4(r + 1)(r + 2)](r+1)/2|Σ|−1/2µr(Σ)(r+3)/2µr+2(Σ)−(r+1)/2µr(I2)
−1

× µr+2(Σ)−(r+1)/2µr(I2)
−1

= [4(r + 1)(r + 2)](r+1)/2σ−2(1− ρ2)−1/2σ−r(r+3)(1− ρ2)−r(r+3)/2Q(r, ρ)(r+3)/2

× σ(r+1)(r+2)(1− ρ2)(r+1)(r+2)/2Q(r + 2, ρ)−(r+1)/2Q(r, 0)−1

=
(1− ρ2)1/2Q(r, ρ)(r+3)/2

Q(r, 0)Q(r + 2, ρ)(r+1)/2
,
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whereQ(r, ρ) = (1−ρ2)rµr(Σρ) = σ2r(1−ρ2)rµr(Σ). SinceΣ−1 = σ−2(1−ρ2)−1

[
1 −ρ

−ρ 1

]
,

and with z1, z2 independent standard normal random variables,

Q(r, ρ) = E{(z21 + z22 − 2ρz1z2)
2}

= E





r∑

j=0

(
r

j

)
(z21 − 2ρz1z2)

j(z2)
2(r−j)





= E





r∑

j=0

(
r

j

) j∑

j′=0

(
j

j′

)
z2j

′

1 (−2ρz1z2)
j−j′(z2)

2(r−j)





= E





r∑

j=0

(
r

j

) j∑

j′=0

(
j

j′

)
(−2ρ)j−j′zj+j′

1 z2r−j−j′

2





=

r∑

j=0

j∑

j′=0

(
r

j

)(
j

j′

)
(−2ρ)j−j′mj+j′m2r−j−j′,

wheremk = 1
2{(−1)k+1}OF(k) is the kth central moment of a standard normal variable.
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