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Outlier Robust Small Area Estimation 

R. Chambers1, H. Chandra2, N. Salvati3 and N. Tzavidis4 

 

Abstract: Outliers are a well-known problem in survey estimation, and a variety of approaches have been 

suggested for dealing with them in this context. However, when the focus is on small area estimation using the 

survey data, much less is known – even though outliers within a small area sample are clearly much more 

influential than they are in the larger overall sample. To the best of our knowledge, Chambers and Tzavidis 

(2006) was the first published paper in small area estimation that explicitly addressed the issue of outlier 

robustness, using an approach based on fitting outlier robust M-quantile models to the survey data. Recently, 

Sinha and Rao (2009) have also addressed this issue from the perspective of linear mixed models. Both these 

approaches, however, use plug-in robust prediction. That is, they replace parameter estimates in optimal, but 

outlier sensitive, predictors by outlier robust versions. Unfortunately, this approach may involve an 

unacceptable prediction bias (but a low prediction variance) in situations where the outliers are drawn from a 

distribution that has a different mean to the rest of the survey data (Chambers, 1986), which then leads to the 

suggestion that outlier robust prediction should include an additional term that makes a correction for this bias. 

In this paper, we explore the extension of this idea to the small area estimation situation and we propose two 

different analytical mean squared error (MSE) estimators for outlier robust predictors of small area means. We 

use simulation based on realistic outlier contaminated data to evaluate how the extended small area estimation 

approach compares with the plug-in robust methods described earlier. The empirical results show that the bias-

corrected predictive estimators are less biased than the projective estimators especially when there are outliers 

in the area effects. Moreover, in the simulation experiments we contrast the proposed MSE estimators with 

those generally utilized for the plug-in robust predictors. The proposed bias-robust and linearization-based 

MSE estimators appear to perform well when used with the robust predictors of small area means that are 

considered in this paper. 
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variance trade-off; EBLUP; Robust bias correction. 
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1. Introduction 

Outliers are a fact of life for any survey, and especially so for business surveys. As a consequence, a variety of 

methods have been devised to mitigate the effects of outlier values on survey estimates. Some of these, like 

identification and removal of these data values by ‘experienced’ data experts during survey processing, can be 

effective in ensuring that the resulting survey estimates are unaffected by them. However, being somewhat 

subjective, such methods are not amenable to scientific evaluation. As a consequence there are a number of 

‘objective’ methods for survey estimation that use statistical rules to decide whether an observation is a 

potential outlier and to down-weight its contribution to the survey estimates if this is the case. Generally, an 

outlier robust estimator of this type is based on the assumption that the non-outlier sample values all follow a 

well-behaved working model and so it generally involves prediction of the sum (or mean) of these values 

under this working model. In practice, this often involves replacement of an outlying sample value by an 

estimate of what it should have been if in fact it had been generated under the working model. We refer to 

such methods as Robust Projective in what follows since they project sample non-outlier behaviour on to the 

non-sampled part of the survey population. 

Robust Projective methods essentially emulate the subjective approach described earlier, and typically 

lead to biased estimators with lower variances than would otherwise be the case. The reason for the bias is not 

difficult to find – it is extremely unlikely that the non-sampled values in the target population are drawn from 

a distribution with the same mean as the sample non-outliers, and yet these methods are built on precisely this 

assumption. Chambers (1986) recognised this dilemma and coined the concept of a ‘representative outlier’, i.e. 

a sample outlier that is potentially drawn from a group of population outliers and hence cannot be unit-

weighted in estimation. He noted that representative outliers cannot be treated on the same basis in estimation 

as other sample data more consistent with the working model for the population, since such values can 

seriously destabilise the survey estimates, and suggested addition of an outlier robust bias correction term to a 

Robust Projective survey estimator, e.g. one based on outlier-robust estimates of the model parameters. Welsh 

and Ronchetti (1998) expand on this idea, applying it more generally to estimation of the finite population 

distribution of a survey variable in the presence of representative outliers. A similar idea is implicit in the 

approach described in Chambers et al. (1993), where a nonparametric bias correction is suggested. In what 
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follows, we refer to methods that allow for contributions from representative sample outliers as Robust 

Predictive since they attempt to predict the contribution of the population outliers to the population quantity of 

interest. 

If outliers are a concern for estimation of population quantities, it is safe to say that they are even more 

of a concern in small area estimation, where sample sizes are considerably smaller and model-dependent 

estimation is the norm. It is easy to see that an outlier that destabilises a population estimate based on a large 

survey sample will almost certainly destroy the validity of the corresponding direct estimate for the small area 

from which the outlier is sourced since this estimate will be based on a much smaller sample. This problem 

does not disappear when the small area estimator is an indirect one, e.g. an Empirical Best Linear Unbiased 

Predictor (EBLUP), since the weights underpinning this estimator will still put most emphasis on data from 

the small area of interest, and the estimates of the model parameters underpinning the estimator will 

themselves be destabilised by the sample outliers. Consequently, it is of some interest to see how outlier robust 

survey estimation can be adapted to this situation. 

Chambers and Tzavidis (2006) explicitly address this issue of outlier robustness, using an approach 

based on fitting outlier robust M-quantile models to the survey data. Recently, Sinha and Rao (2009) have also 

addressed this issue from the perspective of linear mixed models. Both these approaches, however, use plug-in 

robust prediction. That is, they replace parameter estimates in optimal, but outlier sensitive, predictors by 

outlier robust versions (a Robust Projective approach). Unfortunately, this approach may involve an 

unacceptable prediction bias (but a low prediction variance) in situations where the outliers are drawn from a 

distribution that has a different mean to the rest of the survey data. 

After discussing Robust Projective estimators for small areas in Section 2, we explore the extension of 

Chambers (1986) Robust Predictive approach to the small area estimation situation in Section 3. In Section 4 

we propose two different analytical mean squared error (MSE) estimators for outlier robust predictors of small 

area means. In particular, the first proposal is based on bias-robust mean squared error estimation discussed by 

Chambers et al. (2007) and represents an extension of the ideas in Royall and Cumberland (1978). We show 

how this approach can be useful for estimating the MSE of small area predictors based on the Sinha and Rao 

(2009) approach. The second MSE estimator is developed under the conditional version of the linear mixed 
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model and it uses the first order approximations to the variances of solutions of estimating equations. This last 

approach can be used for estimating the MSE of a wide variety of small area 'pseudo-linear' predictors, i.e. 

predictors that can be written as weighted sums, where the weights are sample data dependent. Examples of 

such predictors are mixed model and M-quantile model-based predictors under both the Robust Projective and 

the Robust Predictive approaches. In Sections 5 and 6 we use model-based simulations based on realistic 

outlier contaminated data scenarios as well as design-based simulations to evaluate how these two different 

approaches compare, both in terms of estimation performance as well as in terms of MSE estimation 

performance. Section 7 concludes the paper with some final remarks, and a discussion of future research 

aimed at outlier robust small area inference. 

 

2. Robust Projective Estimation for Small Areas 

In what follows we assume that unit record data are available at small area level. For the sampled units in the 

population this consists of indicators of small area affiliation, values  y j  of the variable of interest, values   x j  

of a   p 1 vector of individual level covariates, and values   z j of a vector of area level covariates. For the non-

sampled population units we do not know the values of  y j . However it is assumed that all areas are sampled 

and that we know the numbers of such units in each small area and the respective small area averages of   x j  

and   z j . We also assume that there is a linear relationship between  y j  and   x j  and that sampling is non-

informative for the small area distribution of  y j  given   x j , allowing us to use population level models with 

the sample data. 

A popular way of using the above data in small area estimation is to assume a linear mixed model, with 

random effects for the small areas of interest (see Rao, 2003). Let
 
y ,  X  and  Z  denote the population level 

vector and matrices defined by  y j ,   x j  and   z j  respectively. Then 

 
 
y = X + Zu + e  (1) 

where 
    u N (0, u )  is a vector of mq area-specific random effects and 

    e N (0, e )  is a vector of N 
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individual specific random effects. Here m is the number of small areas that make up the population and q is 

the dimension of   z j . It is assumed that the covariance matrices  u  and  e  are defined in terms of a lower 

dimensional set of parameters
   = ( 1,…, K ) , which are typically referred to as the variance components of 

(1), while  is usually referred to as its fixed effect. 

Let  
ˆ  and   û  denote estimates of the fixed and random effects in (1). The EBLUP of the area i mean 

of the  y j  under (1) is then 

 
   
ŷi

EBLUP
= Ni

1 ni ysi + Ni ni( ) xri
T ˆ + zri

T
û( ){ }  (2) 

where   û  denotes the vector of the estimated area specific random effects and we use indices of s and r to 

denote sample and non-sample quantities respectively. Thus  ysi  is the average of the  ni  sample values of 

 y j  from area i and   xri  and   zri  denoting the vectors of average values of   x j  and   z j  respectively for the 

 Ni ni  non-sampled units in the same area. 

From a Robust Projective viewpoint, (2) can be made insensitive to sample outliers by replacing  
ˆ  

and   û  by outlier robust alternatives. To motivate this approach, we initially assume the variance components 

 are known, so the covariance matrices  u  and  e  in (1) are known. Put   Vs = es + Zs uZs
T  where 

 es  denotes the sample component of  e . Then the BLUE of the fixed effect vector  is 

 
    

= Xs
T
Vs

1
Xs{ }

1
Xs

T
Vs

1
ys , (3) 

while the BLUP of the random effects vector  u  is 

 
    
u = uZs

T
Vs

1
ys Xs( ) . (4) 

It is easy to see that (3) and (4) are solutions to 

    Xs
T
Vs

1
ys Xs( ) = 0  (5) 

and 

    uZs
T
Vs

1
ys Xs( ) u = 0 . (6) 

A straightforward way to make the solutions to (5) and (6) robust to sample outliers is therefore to replace 
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them by 

 
   
Xs

T
Vs

1/2
Vs

1/2
ys Xs{ }( ) = 0  (7) 

and 

 
   uZs

T
Vs

1/2
Vs

1/2
ys Xs{ }( ) u

1/2
u

1/2
u( ) = 0 . (8)

  

Here  is a bounded influence function and   (a)  denotes the vector defined by applying  to every 

component of  a . Unfortunately, since   Vs  is not a diagonal matrix, the solution to (8) can be numerically 

unstable. An alternative approach was therefore suggested by Fellner (1986), who noted that any solution to 

(5) and (6) was also a solution to 

    Xs
T

es
1

ys Xs Zsu( ) = 0  

and 

    Zs
T

es
1

ys Xs Zsu( ) u
1
u = 0 . 

He suggested that these alternative estimating equations (and hence their solutions) be made outlier robust by 

replacing them by 

 
   
Xs

T
es

1/2
es

1/2
ys Xs Zsu{ }( ) = 0  (9) 

and 

 
   
Zs

T
es

1/2
es

1/2
ys Xs Zsu{ }( ) u

1/2
u

1/2
u( ) = 0 . (10) 

Since (9) and (10) assume the variance components  are known, their usefulness is somewhat 

limited unless outlier robust estimators of these parameters can also be defined. This is an issue investigated 

by Richardson and Welsh (1995). These authors propose two outlier robust variations to the maximum 

likelihood estimating equations for . One of these (ML Proposal II) leads to an estimating equation for the 

variance component  k  of of the form 

 
   

ys Xs( )
T

Vs
1/2{ }Vs

1/2
Vs k( )Vs

1/2
Vs

1/2
ys Xs( ){ } = tr Dn Vs k( ){ }  (11) 

where   Vs k  denotes the first order partial derivative of   Vs  with respect to the variance component  k  
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and, for 
   Z N (0,1) , 

 
   
Dn = E 2 (Z ){ }Vs

1 . (12) 

Sinha and Rao (2009) describe an approach to outlier robust estimation of  and  u  in (1) that 

builds on these results, substituting approximate solutions to both (7) and (11) into the Fellner estimating 

equation (10) to obtain an outlier robust estimate of the area effect  u . In particular, their approach replaces 

(7) by 

 
   
Xs

T
Vs

1
Us

1/2
Us

1/2
ys Xs{ }( ) = 0  (13) 

where   Us = diag Vs( ) , and replaces (12) by 

 
   

ys Xs( )
T

Us
1/2{ }Us

1/2
Vs

1
Vs k( )Vs

1
Us

1/2
Us

1/2
ys Xs( ){ } = tr Dn Vs k( ){ }.  (14) 

Since the solutions to (13) and (14) depend on the influence function , we denote them by a superscript 

of  below. The Sinha and Rao (2009) Robust Projective alternative to (2) is then 

    ŷi
SR
= x i

T ˆ
+ zi

T
û . (15) 

Note that (15) estimates the area i mean under (1). A minor modification restricts this to the mean of the 

non-sampled units in area i, in which case (15) becomes 

 
   
ŷi

REBLUP
= Ni

1 ni ysi + Ni ni( ) xri
T ˆ + zri

T
û( ){ } . (16) 

Hereafter we call this estimator Robust EBLUP (REBLUP). An alternative methodology for outlier robust 

small area estimation is the M-quantile regression-based method described by Chambers and Tzavidis (2006). 

This is based on a linear model for the M-quantile regression of 
 
y  on  X , i.e. 

    mq (X) = X q  (17) 

where    mq (X)  denotes the M-quantile of order q of the conditional distribution of  y  given  X . An estimate 

  
ˆ

q  of  q  can be calculated for any value of  q  in the interval (0,1), and for each unit in sample we define 

its unique M-quantile coefficient under this fitted model as the value  q j  such that 
   
y j = x j

T ˆ
q j

, with the 

sample average of these coefficients in area i denoted by  qi . The M-quantile estimate of the mean of  y j  in 
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area i is then 

 
   
ŷi

MQ
= Ni

1 ni ysi + Ni ni( )xri
T ˆ

qi
{ } . (18) 

Note that the regression M-quantile (17) model depends on the influence function  underpinning the M-

quantile. When this function is bounded, sample outliers have limited impact on   
ˆ

q . That is, (18) 

corresponds to assuming that all non-sample units in area i follow the working model (17) with  q = qi , in the 

sense that one can write 
   
y j = x j

T
qi
+  noise  for all such units. 

3. Robust Predictive Estimation for Small Areas 

A problem with the Robust Projective approach is that it assumes all non-sampled units follow the working 

model, or, in what essentially amounts to the same thing, that any deviations from this model are noise and so 

cancel out ‘on average’. Thus, under the linear mixed model (1) one can see that provided the individual 

errors of the non-sampled units are symmetrically distributed about zero, the REBLUP (16) of Sinha and Rao 

(2009) will perform well since it is based on the implicit assumption that the average of these errors over the 

non-sampled units in area i converges to zero. The M-quantile estimator MQ (18) is no different since it 

assumes that the errors 
  
y j x j

T
qi

 from the area i-specific M-quantile regression model are ‘noise’ and hence 

also cancel out on average. Note that this does not mean that these non-sample units are not outliers. It is just 

that their behaviour is such that our best prediction of their corresponding average value is zero. 

Welsh and Ronchetti (1998) consider the issue of outlier robust prediction within the context of 

population level survey estimation. Starting with a working linear model linking the population values of  y j  

and   x j , and sample data containing representative outliers with respect to this model, they extend the 

approach of Chambers (1986) to robust prediction of the empirical distribution function of the population 

values of  y j . Their argument immediately applies to robust prediction of the empirical distribution function 

of the area i values of  y j , and leads to a predictor of the form 

 
   
F̂i (t) = Ni

1 I ( y j
j si

t)+ ni
1 I x k

T ˆ + ij y j x j
T ˆ( ) ij{ } t( )

k rij si

. (19) 
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Here  
ˆ  denotes an M-estimator of the regression parameter in the linear working model based on a 

bounded influence function ,  ij  is a robust estimator of the scale of the residual    y j x j
T ˆ  in area i 

and  denotes a bounded influence function that satisfies . Tzavidis et al. (2009) note that the 

robust estimator of the area i mean of the  y j  defined by (19) is just the expected value functional defined by 

it, which is 

 
   
ŷi = tdF̂i (t) = Ni

1 ni ysi + Ni ni( ) xri
T ˆ + ni

1
ij y j x j

T ˆ( ) ij{ }
j si

. (20) 

These authors therefore suggest an extension to the M-quantile estimator (18) by replacing  
ˆ  in (20) by 

  
ˆ

qi
, which leads to a ‘bias-corrected’ version of (18), hereafter MQ-BC, given by 

 
   
ŷi

MQ BC
= Ni

1 ni ysi + Ni ni( ) xri
T ˆ

qi
+ ni

1
ij
MQ y j x j

T ˆ
qi

( ) ij
MQ{ }

j si

 (21) 

and  ij
MQ  is a robust estimator of the scale of the residual 

   
y j x j

T ˆ
qi

 in area i. 

The use of the two influence functions  and  in (21) is worthy of comment. The first, , 

underpins   
ˆ

q , and hence 
  
ˆ

qi
. Its purpose is to ensure that sample outliers have little or no influence on the fit 

of the working M-quantile model. As a consequence it is bounded and down-weights these outliers. The 

second, , is still bounded but ‘less restrictive’ than  (since ) and its purpose is to define an 

adjustment for the bias caused by the fact that the first two terms on the right hand side of (21) treat sample 

outliers as self-representing. A similar argument can be used to modify the REBLUP (16). In particular, a 

Robust Predictive version of this estimator, hereafter REBLUP-BC, mimics the bias correction idea used in 

(21) and leads to 

 
   
ŷi

REBLUP BC
= ŷi

REBLUP
+ 1 ni Ni

1( )ni
1

ij y j x j
T ˆ z j

T
û( ) ij{ }

j si

, (22) 

where the  ij  are now robust estimates of the scale of the area i residuals    y j x j
T ˆ z j

T
û . 
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4. MSE Estimation for Robust Predictors 

In this Section we propose two different MSE estimators for robust predictors of small area means under the 

Robust Projective and Robust Predictive approaches. In Section 4.1 we apply the ideas set out by Chambers et 

al. (2007) to develop a pseudo-linearization estimator of the MSE of REBLUP and REBLUP-BC. In Section 

4.2 we use first order approximations to the variances of solutions of estimating equations to develop MSE 

estimators, under the conditional version of the linear mixed model, for the REBLUP, EBLUP and MQ 

predictors for small area means.  

 

4.1 Bias-robust MSE estimation for REBLUP and REBLUP-BC 

Sinha and Rao (2009) proposed a computationally intensive parametric bootstrap-based estimator for the MSE 

of REBLUP. An alternative MSE is the one that conditions on the realised values of the area effects (see 

Longford, 2007). In what follows we propose an estimator of the conditional MSE of the REBLUP and 

REBLUP-BC that is much less computationally demanding than the unconditional MSE estimators suggested 

by Sinha and Rao (2009). The proposed estimator is based on the pseudo-linearization approach to MSE 

estimation described by Chambers et al. (2007). See also Chandra and Chambers (2005, 2009) and Chandra et 

al. (2007). The MSE estimator can be used for predictors that can be expressed as weighted sums of the 

sample values. For this reason re-express REBLUP (16) and REBLUP-BC (22) in a pseudo-linear form, and 

then apply heteroskedasticity-robust prediction variance estimation methods that treat these weights (which 

typically depend on estimated variance components) as fixed. More precisely, under model (1) the Robust 

BLUP of  yi  can be expressed as 

 
    
ŷi

RBLUP
= wij

RBLUP y jj s
= wis

RBLUP( )
T

ys , i 1…m  (23) 

where 

   
wis

RBLUP( )
T
=

1
Ni

1s
T
+ Ni ni( ) x ir

T
As + zir

T
Bs Is XsAs( ){ } . 

Here 

• 

   
As = Xs

T
Vs

1
Us

1/2
W1sUs

1/2
Xs( )

1
Xs

T
Vs

1
Us

1/2
W1sUs

1/2 , where    W1s  is a  n n  diagonal matrix of weights 
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with j-th component 
    
w1 j = U j

1/2 y j x j
T{ }( ) U j

1/2 y j x j
T{ } ; 

• 

   
Bs = Zs

T
es

1/2
W2s es

1/2
Zs + u

1/2
W3s u

1/2( )
1

Zs
T

es
1/2

W2s es
1/2( ) , where    W2s  is a  n n diagonal matrix of 

weights with j-th component 
    
w2 j = e( )

1
y j x j

T
z ju{ } e( )

1
y j x j

T
z ju{ } ;  and 

•    W3s  is a  m m  diagonal matrix of weights with i-th component 
   
w3i = u( )

1
ui u( )

1
ui . 

The Appendix provides details on the computation of such weights. Note that the REBLUP (16) can be 

expressed in exactly the same way, except that all quantities in the vector   wis
RBLUP  that depend on (unknown) 

variance components now need a ‘hat’. Given this pseudo-linear representation for the REBLUP, we develop a 

simple first order approximation to its MSE assuming the conditional version of the model (1), i.e. the random 

effects are considered as fixed. In this case we can apply the approach described by Royall and Cumberland 

(1978) to estimate the prediction variance of the RBLUP for yi . Let   I ( j i)  denote the indicator for whether 

unit j is in area i. Then 

 

   

Var ŷi
RBLUP yi X,u )( ) = Ni

2 Niwij
RBLUP I ( j i)( )

2
Var y j | x j ,u( )j s{

+ Var y j | x j ,u( )j ri
} ,

 (24) 

where the first term on the right hand side above is estimated replacing 
   
Var y j | x j ,u( )  by  j

1( y j μ̂ j )
2 , 

where   μ̂ j = kj ykk s
 is an unbiased linear estimator of the conditional expected value 

   
μ j = E y j | x j ,u( )  

and 
  j = 1 2 jj + kj

2
k s{ }  is a scaling constant. Further details can be found in Chambers et al. (2007) 

and Salvati et al. (2009). The conditional prediction variance of the RBLUP is 

 
  
V̂ ( ŷi

RBLUP ) = Ni
2 aij

2
+ (Ni ni )n

1{ } j
1( y j μ̂ j )

2
j s

, (25) 

where   aij = Niwij
RBLUP I ( j i) . Due to the well-known shrinkage effect associated with BLUPs, replacing 

  μ̂ j  by the BLUP of  μ j  under (1) in expression (25) can lead to biased estimation of the prediction 

variance under the conditional model. For this reason, Chambers et al. (2007) recommend that   μ̂ j  be 

computed as the ‘unshrunken’ version of the BLUP for μ j : 



12 

 
    μ̂ j = x j

T
+ z j

T
Bsu . (26) 

The conditional bias of the RBLUP under (1) is given by 

 
   
E ŷi

RBLUP yi X,u( ) = wij
RBLUPμ jj s

Ni
1 μ jj ri si( )

, 

which has the simple ‘plug-in’ estimator 

 
  
B̂( ŷi

RBLUP ) = wij
RBLUPμ̂ jj s

Ni
1 μ̂ jj ri si( )

, (27) 

with   μ̂ j  defined by expression (26). The estimator of the conditional MSE of the RBLUP can finally be 

written as 

 
   
MSE ŷi

RBLUP( ) = V̂ ŷi
RBLUP( ) + B̂ ŷi

RBLUP( ){ }
2
. (28) 

The conditional MSE of the REBLUP (16) is then estimated by replacing all unknown variance 

components in (28) by their estimated values. Note that: (a)   
ˆ

j = 1+O(n 1)  in this case, so that   
ˆ

j  will be 

very close to one in most practical applications. This suggests that there is little to be gained by not setting 

  
ˆ

j 1 when calculating the conditional prediction variance (25); (b) the square of the bias estimator (27) 

can be biased for the squared bias term in the MSE estimator. This bias can be corrected (see Chambers et al., 

2007), but a small sample size could lead to this correction becoming unstable, so we prefer use (28) since 

this is then a conservative estimator of the MSE of the predictor of the small area mean under model (1); (c) 

the heteroskedasticity-robust MSE estimator (28) ignores the extra variability associated with estimation of the 

variance components, and is therefore a first order approximation to the actual conditional MSE of the 

REBLUP. Since use of the REBLUP will typically require a large overall sample size, we expect any 

consequent underestimation of the conditional MSE of the REBLUP to be small. 

The conditional MSE estimator for the REBLUP-BC (22) is obtained using the same heteroskedasticity-

robust pseudo-linearization approach as outlined above for the MSE estimator for the REBLUP. The only 

difference from that development is that the weights  wij
RBLUP  used in (23) are now replaced by corresponding 

REBLUP-BC weights 
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wis
RBLUP BC( )

T
=

1
Ni

1+
Ni ni

ni

wj 1s
T
+ x j

T

j ri

Ni ni

ni

x j
T wj

j si

As +

+ Ni ni( )
Ni ni

ni

wj
j si

zi
T
Bs Is XsAs{ } ,

 (29) 

where

   

wj =
y j x j

T ˆ z j
T
û( ) ij{ }

y j x j
T ˆ z j

T
û( ) ij

. Since the REBLUP-BC is an approximately unbiased estimator of 

the small area mean, the squared bias term does not impact significantly on the mean squared error estimator, 

and so is typically omitted. 

4.2 Linearization-Based MSE estimation for small area predictors 

In this Section we propose a new MSE estimator, extending the linearization approach of Street et al. (1988) to 

estimation of prediction variance for estimators based on robust estimating equations. The MSE estimator is 

developed on the assumption that the working model for inference is an area-specific linear model, and so the 

approach conditions on area effects when applied in the context of such a model. In what follows we show 

how this approach can be used for estimating the MSE of the REBLUP (16), the EBLUP (2) and the MQ 

estimator (18). The MSE estimators of REBLUP-BC and MQ-BC are reported in the Appendix. Note that 

when used with an estimator based on a mixed model, the proposed MSE estimator provides a second order 

approximation to the true MSE since it includes a term for the contribution to variability from estimation of 

variance components. 

MSE estimation for REBLUP  

Under model (1) the prediction variance of the Robust BLUP of  yi  can be expressed as 

 

    

Var ŷi
RBLUP yi( ) =Var

1
Ni

x j
T

+ z j
T
u( )

j ri

1
Ni

y j
j ri

= 1
ni

Ni

2

xri
TVar ( )xri + 1

ni

Ni

2

zri
TVar u( ) zri + 1

ni

Ni

2

Var eri( ) ,

 (30) 

assuming independence between 
 

 and   u . It follows that we need to estimate 
   Var( ) , 

    Var(u )  in 

order to be able to calculate an estimate of the prediction variance of the RBLUP. In order to do this, put 

   
=

T ,u T( )
T

, so 
    
=

T ,u T( )
T

. Then, from equations (10) and (13), 
   H( ) = 0  where 
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H( ) =
H ( )

H
u

( )
=

Xs
T
Vs

1
Us

1/2
Us

1/2
ys Xs{ }( ) = 0

Zs
T

es
1/2

es
1/2

ys Xs Zsu{ }( ) u
1/2

u
1/2

u( ) = 0
. 

Since the solutions of the equations depend on the influence function , we denote them by a superscript of 

. We can use previous results on the asymptotic variance of solutions to an estimating equation (Welsh and 

Richardson, 1997; Sinha and Rao, 2009) to obtain a first order approximation to
  
Var ( )  and by extension the 

prediction variance of the RBLUP. To do this, we note that 

    
Var0 ( ) E0 H0( ){ }

1
Var0 H( 0 ){ } E0 H0( ){ }

1 T

 where 

 

   

Var0 H ( 0 )( ) =Var0 U j
1/2 y j x j

T
0( ){ } Xs

T
Vs

1
UsVs

1
Xs

Var0 H
u

( 0 )( ) = E0
2

e( )
1

y j x j
T

0 z j
T
u0( ){ } Zs

T
es

1
Zs ,

 (31) 

and  

   

E0 H ( 0 ){ } = Xs
T
Vs

1
Us

1/2 E0 Us
1/2

ys Xs 0( ){ } Us
1/2

Xs

E0 u
H

u
( 0 ){ } = Zs

T
es

1/2 E0 es
1/2

ys Xs 0 Zsu0( ){ } es
1/2

Zs u
1/2 E u

1/2
u0{ } u

1/2 .
(32) 

The previous expressions lead to the estimator: 

 

    

Var ( ) = Ê H0( ){ }
1

Var H ( 0 ){ } Ê H0( ){ }
1 T

Var u( ) = Ê
u

H0( ){ }
1
Var H

u
( 0 ){ } Ê

u
H0( ){ }

1 T

,

 (33) 

where 

• 

   
Ê H ( 0 ){ } = Xs

T
Vs

1
Us

1/2
RUs

1/2
XS , 

• 

   
Ê

u
H

u
( 0 ){ } = Zs

T
es

1/2
T es

1/2
Zs u

1/2
Q u

1/2 , 

• 

    
Var H ( 0 ){ } = n p( )

1

1
2 rj( )

j=1

n

Xs
T
Vs

1
UsVs

1
Xs , and 

• 

    
Var H

u
( 0 ){ } = n p( )

1

2
2 t j( )

j=1

n

Zs
T

es
1
Zs . 

Here, assuming use of a Huber Proposal 2 influence function, R  is a  n n  diagonal matrix with j-th 

diagonal element is 1 if c < rj < c , 0 otherwise, with
    
rj =U j

1/2 y j x j
T( ) ; the constant c represents the cut-

off of the bounded influence function;  T  is a diagonal matrix of dimension  n n  with j-th element 
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diagonal element equal to 1 if c < t j < c , 0 otherwise, with
    
t j = e( )

1
y j x j

T
z j

T
u( ) ;  Q  is a  m m  

diagonal matrix with i-th diagonal element equal to 1 if c < qi < c , 0 otherwise, with
  
qi = u

2( )
1/2

ui . The 

values 
  

1 = 1+
p
n

Var rj( )( ) E rj( )( )
2

 and 
   

2 = 1+
p
n

Var ti( )( ) E ti( )( )
2

 are bias 

corrector terms (Huber, 1981). 

An estimator of the prediction variance of RBLUP can be written as: 

 
   
V̂ ŷi

RBLUP yi( ) = h1i ( ) + h2i ( ) + h3i ( )  (34) 

where 
    
h1i ( ) = 1

ni

Ni

2

zri
TV̂ u( ) zri  is due to the estimation of random effects, while the second term 

    
h2i ( ) = 1

ni

Ni

2

xri
TV̂ ( )xri  is due to the estimator 

 
. The term 

   
h3i ( ) = 1

ni

Ni

2

V̂ eri( )  can be 

estimated from the area i data: 
    
V̂ (eri ) =

1
(Ni ni )(ni 1)

y j x j
T

z j
T
u( )j si

2
, or from the entire data set: 

    
V̂ (eri ) =

1
(Ni ni )(n 1)

y j x j
T

z j
T
u( )j shh

. Moreover, since we are working under the conditional 

approach, we have to add to the variance estimator (34) an estimator of the squared bias term. The result is 

that the estimator of the conditional MSE of the RBLUP can be written as: 

 
   
MSE ŷi

RBLUP( ) = h1i ( ) + h2i ( ) + h3i ( ) + B̂ ŷi
RBLUP( ){ }

2
, (35) 

where the 
  
B̂ ŷi

RBLUP( )  is the expression (27) developed in the previous Section. The corresponding estimator 

of the conditional MSE of the REBLUP (16) is obtained by adding an extra component to expression (35) 

due to the variability of the estimated variance components: 

 
   
MSE ŷi

REBLUP( ) = MSE ŷi
RBLUP( ) + E ŷi

REBLUP ŷi
RBLUP( )

2
. (36) 

The last term is intractable and it is therefore necessary to approximate it. An approximation of this term is 

obtained by Taylor approximation following the results of Prasad and Rao (1990). Under the conditional 

approach 

   
ŷi

REBLUP ŷi
RBLUP 1

Ni

z j
T

j ri
k
Bs( ) ys Xs( ) ˆ

k k{ }
k=1

2

, 
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where   Bs  is defined as in previous Section, and 
  
= u

2 , e
2( )  is the vector of the variance components. 

Assuming that the derivative of 
 
( )  with respect to is of lower order, the term 

  
E ŷi

REBLUP ŷi
RBLUP( )

2
 in (36) is then estimated by 

 
    
h4i ( ) =

1
Ni

z j
T

j ri

Var( ˆ
u

2 , ˆ
e

2 )
1
Ni

z j
T

j ri

T

+ o m 1( )  (37) 

where 

 
    

=
u

2 , e
2Bs( ) z j

T
u( ) zl

T
u( ) + e

2
I( j = l){ }

lj u
2 , e

2Bs( )
k=1

2

. 

Note that   Var( ˆ
u

2 , ˆ
e

2 )  in (37) is obtained using the results of the asymptotic distribution of 
  u

2 , e
2( )  

given in Sinha and Rao (2009). The MSE estimator of the REBLUP (16) then becomes: 

 
   
MSE ŷi

REBLUP( ) = h1i ( ) + h2i ( ) + h3i ( ) + B̂ ŷi
RBLUP( ){ }

2
+ h4i ( ) . (38) 

An estimator of 
   
MSE ŷi

REBLUP( )  can be obtained by replacing all unknown variance components  in (38) 

by their estimated values  ˆ . This corresponds to substituting 
    
=

T ,u T( )
T

 by 
   
ˆ = ˆ T , û T( )

T
 in the 

MSE approximation (38) and leads to: 

 
  
mse ŷi

REBLUP( ) = h1i
ˆ( ) + h2i

ˆ( ) + h3i
ˆ( ) + B̂ ŷi

REBLUP( ){ }
2
+ h4i

ˆ( ) . (39) 

We have
   
E h2i

ˆ( ) = h2i ( ) + o m 1( ) , 
   
E h3i

ˆ( ) = h3i ( ) + o m 1( ) , 
   
E h4i

ˆ( ) = h4i ( ) + o m 1( )  to the 

desired order of approximation. However, 
  
h1i

ˆ( ) is not the correct estimator of 
   
h1i ( )  because its bias is 

generally of the same order as
  
h2i

ˆ( ) , h3i
ˆ( ) , h4i

ˆ( ) . To evaluate the bias of
  
h1i

ˆ( ) , we use a Taylor series 

expansion of 
  
h1i

ˆ( )  around 
  
= u

2 , e
2( ) : 

 

   

h1i
ˆ( ) = h1i ( ) + ˆ( )

T
h1i ( ) +

1
2

ˆ( )
T 2h1i ( ) ˆ( )

= h1i ( ) + 1 + 2 .
 

If   ˆ  is unbiased for  then  E 1 = 0 . In general, if  ˆ  is biased,   E 1  is of lower order than  E 2 , 



17 

so 

   

E h1i
ˆ( ) h1i ( ) +

1
2

tr 2h1i ( )E ˆ( )
T ˆ( )

= h1i ( ) +
1
2

1
ni

Ni

2

tr zri
T 2h1i ( ) ziVar( ˆ

u
2 , ˆ

e
2 ){ }+ o m 1( ).

 

We denote the second term on the right hand side above by 
  
h5i

ˆ( ) . The estimator of the MSE of   ŷi
REBLUP  is 

then: 

 
  
mse ŷi

REBLUP( ) = h1i
ˆ( ) + h2i

ˆ( ) + h3i
ˆ( ) + B̂ ŷi

REBLUP( ){ }
2
+ h4i

ˆ( ) + h5i
ˆ( )  (40) 

and 
   
E mse ŷi

REBLUP( ) = MSE ŷi
REBLUP( ) + o m 1( ) . 

MSE estimation for EBLUP 

The second predictor of  yi  that we consider is the well-known EBLUP based on (1). Note that EBLUP is a 

particular case of REBLUP when the bounded influence function is replaced by the (unbounded) identity 

function. Under (1) the prediction variance of the BLUP of  yi  is 

 
    
Var ŷi

RBLUP yi( ) = 1
ni

Ni

2

xri
TVar ( )xri + 1

ni

Ni

2

zri
TVar u( ) zri + 1

ni

Ni

2

Var eri( )  (41) 

assuming independence between 
 

 and  u . Putting 
   
=

T ,uT( )
T

, so 
    
=

T ,uT( )
T

 and using results on the 

asymptotic variance of solutions to estimating equations (Richardson and Welsh, 1997), 

   
H( ) =

H ( )

Hu ( )
=

Xs
T

es
1

ys Xs Zsu( ) = 0

Zs
T

es
1

ys Xs Zsu( ) u
1
u = 0

, 

we obtain first order approximation to 
  
Var ( )  and by extension the prediction variance of the BLUP. The 

starting point is 
    
Var0 ( ) E0 H0( ){ }

1
Var0 H( 0 ){ } E0 H0( ){ }

1 T

, which leads to the estimators: 

 

    

Var ( ) = Ê H0( ){ }
1
Var H ( 0 ){ } Ê H0( ){ }

1 T

Var u( ) = Ê uH0( ){ }
1
Var Hu ( 0 ){ } Ê uH0( ){ }

1 T
 (42) 

where 

• 

   
Ê H ( 0 ){ } = Xs

T
Vs

1
Xs , 
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•    Ê uHu ( 0 ){ } = Zs
T

es
1
Zs u

1 , 

• 

    
Var H ( 0 ){ } = n p( )

1
y j x j

T( )
2

j=1

n

Xs
T
Vs

1
Vs

1
Xs , and 

• 

    
Var Hu ( 0 ){ } = n p( )

1
y j x j

T
z j

T
u( )

2

j=1

n

Zs
T

es
1

es
1
Zs . 

An estimator of the MSE for the BLUP can therefore be written as: 

 
   
MSE ŷi

BLUP( ) = h1i ( ) + h2i ( ) + h3i ( )  (43) 

where 
    
h1i ( ) = 1

ni

Ni

2

zri
TV̂ u( ) zri  is due to the estimation of random effects, while the second term 

    
h2i ( ) = 1

ni

Ni

2

xri
TV̂ ( )xri  is due to 

 
. The term 

   
h3i ( ) = 1

ni

Ni

2

V̂ eri( )  can be estimated just using 

area i data,
    
V̂ (eri ) =

1
(Ni ni )(ni 1)

y j x j
T

z j
T
u( )j si

2
, or by using all the sample data, 

    
V̂ (eri ) =

1
(Ni ni )(n 1)

y j x j
T

z j
T
u( )j shh

. Note that we have not added the squared bias estimator to 

(43) – as we did in the REBLUP case – because this bias is zero (see Chambers et al., 2007). In order to define 

the conditional MSE of the EBLUP, we add the term 
   
h4i ( ) , see equation (37), to (43). In the case of the 

EBLUP predictor for the small area mean, 
   
h4i ( )  contains two differences with respect to the same 

expression developed for REBLUP: i) the matrix    Bs = uZs
T
Vs

1 ; ii)   Var( ˆ
u
2 , ˆ

e
2 )  is obtained using the 

results of the asymptotic distribution of 
  

ˆ
u
2 , ˆ

e
2( )  given by Rao (2003). The MSE of the EBLUP (2) is 

therefore 

 
   
MSE ŷi

EBLUP( ) = h1i ( ) + h2i ( ) + h3i ( ) + h4i ( )  (44) 

and its estimator can be written as: 

 
  
mse ŷi

EBLUP( ) = h1i
ˆ( ) + h2i

ˆ( ) + h3i
ˆ( ) + 2h4i

ˆ( )  (45) 

since 
  
E h1i

ˆ( ) h1i ( ) h4i ( ) + o m 1( ) . 
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MSE estimation for MQ 

The third predictor that we consider is the MQ predictor (18) based on the M-quantile approach (Chambers 

and Tzavidis, 2006). For fixed q, the prediction variance of the MQ predictor is 

 
   
Var( ŷi

MQ yi ) = 1
ni

Ni

2

xri
TVar ˆ

qi
( )xri{ }+ 1

ni

Ni

2

Var eri( ) . (46) 

It follows that we need to estimate 
  
Var ˆ

qi
( )  in order to be able to calculate an estimate of the prediction 

variance of this predictor. The starting point, as usual, is the first order approximation based on the estimating 

equations for 
  
ˆ

qi
. Putting  q = q , 

 
   
Var0

ˆ
q( ) E0 q

H0( ){ }
1

Var0 H 0q( ){ } E0 q
H0( ){ }

1 T

 (47) 

with 

   
H( 0q ) = x j

j=1

n

q (rj ) = Xs
T

q (r0q )  

where  q  is a bounded influence function depending on q,   q (r0q )  is the n-vector with elements 

   q (rj0q ) = q j0q
1 y j x j

T
0q( ){ }  and   j0q  is a robust estimator of the scale of the residual    y j x j

T
0q . The 

   
Var0 H( 0q ){ }  component of expression (47) can then be written as 

   
Var0 H( 0q ){ } = Xs

T E0 q (r0q ) q
T (r0q ){ }{ }Xs , 

because the y values are conditionally uncorrelated and
  
E0 q (r0q ){ } = 0 for each q . Assuming a Huber-type 

influence function, we obtain 

   

E0 q
H0q( ) = Xs

T E0 2
d

d q
q (r0q )

q= 0 q

= 2Xs
T
CXs , 

where  C  is a  n n  diagonal matrix with j-th diagonal component 

  j0q
1 E0q qI 0 < rj0q c( ) + 1 q( ) I c < rj0q 0( ){ } . These expressions then lead to two types of estimators: 

1.  
    
Var( ˆ

q ) = n(n p) 1 Ê
q
H0q( ){ }

1

Var H( 0q ){ } Ê
q
H0q( ){ }

1 T

 (48) 
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where 
    
Var H( 0q ){ } = Xs

T
F̂Xs ,   F̂  is a diagonal matrix of dimension  n n  with j-th element equal to 

  
f̂ j = ŵjq

2 r̂jq
2 ŵjqr̂jq

i=1

n 2

; 
   
Ê

q
H0q( ) = 2Xs

T
ĈXs  where   Ĉ  is a  n n  diagonal matrix with j-th 

element 
  
ĉ j = ˆ

jq
1 qI 0 < r̂jq c( ) + 1 q( ) I c < r̂jq 0( ){ } . Here   ŵjq  is the final weight in the iterative 

re-weighted least squared (IRLS) process, and
   
r̂jq = ˆ

jq
1 y j x j

T ˆ
q( ) . Note the factor   n(n p) 1  which 

ensures agreement with Street et al. (1988) when   Xs = 1  and   q = 0.5 . The 

  
= 1+

p
n

Var q r̂jq( )( ) E q r̂jq( )( )
2

 value is the bias corrector term (Huber, 1981). 

2.  

    

Var( ˆ
q ) =

n p( )
1

q
2 r̂iq( )

i=1

n

n 1
q

i=1

n

r̂iq( )
2

Xs
T
Xs( )

1
. (49) 

That is, the Street et al. (1988) estimator when  q = 0.5 . 

Depending on which of (48) or (49) is used, the estimator of the prediction variance of the MQ predictor when 

 q = q  can be written as: 

 
    
V̂ ŷi

MQ( ) = 1
ni

Ni

2

xri
T Var ˆ

qi
( )xri{ }+ 1

ni

Ni

2

V̂ eri( )  (50) 

with 
   
V̂ (eri ) =

1
(Ni ni )(n 1)

y j x j
T ˆ

qh
( )j shh

2
. Moreover, since we are taking a conditional approach, 

we have to add an estimator of the squared bias based on: 

   
B̂ ŷi

MQ( ) = Ni
1 wjx j

T ˆ
qk

j skk

x j
T ˆ

qi
j i

 

where 

  

wj =

Ni

ni

+ bj                if  j i

bj                       otherwise
 

and 
   
b

T
= x j

T

j ri

Ni ni

ni

x j
T

j si

(Xs
T
W(qi )Xs ) 1

Xs
T
W(qi )  is a   1 n vector. The final expression for the 
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MSE estimator of the MQ predictor is therefore: 

    
MSE ŷi

MQ( ) = 1
ni

Ni

2

xri
T Var ˆ

qi
( )xri{ }+ 1

ni

Ni

2

V̂ eri( ) + Ni
1 wjx j

T ˆ
qk

j skk

x j
T ˆ

qi
j i

2

. (51) 

Note that (50) is a first order approximation to the asymptotic prediction variance of the MQ predictor, and 

so (51) could underestimate its MSE. 

 

5. Results from Model-Based Simulation Studies 

We provide model-based simulation results illustrating the comparative performances of the different outlier 

robust small area predictors described above. Population data are generated for   m = 40  ‘small areas’, with 

samples selected by simple random sampling without replacement within each area. Population and sample 

sizes are the same for all areas, and are fixed at either   Ni = 100, ni = 5  or   Ni = 300, ni = 15 . Values for X are 

generated as independently and identically distributed from a lognormal distribution with a mean of 1.004077 

and a standard deviation of 0.5 on the log scale. Values for Y are generated as   yij = 100 + 5xij + ui + ij , where 

the random area and individual effects are independently generated according to four scenarios: 

• [0,0] – No outliers: 
   u N (0,3)  and 

   N (0,6) . 

• [e,0] – Individual outliers only: 
   u N (0,3)  and 

   N (0,6)+ (1 )N (20,150) , where  is an 

independently generated Bernoulli random variable with  Pr( = 1) = 0.97 , i.e. the individual effects are 

independent draws from a mixture of two normal distributions, with 97% on average drawn from a ‘well-

behaved’   N (0,6)  distribution and 3% on average drawn from an outlier   N (20,150)  distribution. 

• [0,u] – Area outliers only: 
   u N (0,3)  for areas 1-36, 

   u N (9,20)  for areas 37-40 and 
   N (0,6) , i.e. 

random effects for areas 1–36 are drawn from a ‘well behaved’   N (0,3)  distribution, with those for areas 

37–40 drawn from an outlier   N (9,20)  distribution. Individual effects are not outlier-contaminated. 

• [e,u] – Outliers in both area and individual effects: 
   u N (0,3)  for areas 1-36, 

   u N (9,20)  for areas 

37-40 and 
   N (0,6)+ (1 )N (20,150) . 

Each scenario is independently simulated 500 times. For each simulation the population values are 

generated according the underlying scenario model, a sample is selected in each area and the sample 
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data are then used to compute estimates of each of the actual area means for Y.  

Five different estimators are used for this purpose - the standard EBLUP, see (2), which serves as a 

reference; the projective M-quantile estimator MQ, see (18); the robust bias-corrected predictive MQ 

estimator MQ-BC, see (21); the robust projective REBLUP estimator of Sinha and Rao (2009), see (16); and 

its  robust bias-corrected version REBLUP-BC, see (22). In all cases the ‘projective’ influence function  

is a Huber Proposal 2 type with tuning constant   c = 1.345 . In contrast, the ‘predictive’, less restrictive, 

influence function  used in MQ-BC and REBLUP-BC is also a Huber Proposal 2 type, but with a larger 

tuning constant,   c = 3. 

The performance of these estimators across the different areas and simulations is assessed by computing 

the median values of their area specific relative bias and relative root mean squared error, where the relative 

bias of an estimator   ŷi  for the actual mean  yi  of area i is the average across simulations of the errors 

  ŷi yi  divided by the corresponding average value of  yi , and its relative root mean squared error is the 

square root of the average across simulations of the squares of these errors, again divided by the average value 

of  yi . Table 1 sets out these median values for the different simulation scenarios and different estimators. 

The relative bias results set out in Table 1 confirm our expectations regarding the behaviour of 

projective estimators (EBLUP, REBLUP and MQ) versus bias-corrected predictive estimators (REBLUP-BC 

and MQ-BC). The former are more biased than the latter as a consequence of their implicit assumption that 

although outlier variances may be inflated relative to non-outliers, outlier effects still have zero expectation. 

This increase in bias is most pronounced when there are outliers in the area effects, which is not unexpected 

since that is when area means are most affected by the presence of outliers in the population data. Turning to 

the median RRMSE results, we see that claims in the literature (e.g. Chambers and Tzavidis, 2006) about the 

superior outlier robustness of MQ compared with the EBLUP certainly hold true – provided the outliers are in 

individual effects. If there are outliers in area effects, then MQ appears to offer no extra protection compared 

to the EBLUP, and in fact performs worse, mainly due to its sharply increasing bias in this situation. Similarly, 

when we compare the EBLUP and the REBLUP we see that if outliers are associated with individual effects, 

then REBLUP offers better RRMSE performance than EBLUP. However, the gap between these two 
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estimators narrows considerably when outliers are associated with area effects. In contrast, the two bias-

corrected predictive estimators seem relatively robust in terms of RRMSE performance. Due to increased 

variability as a consequence of their bias corrections, both BC estimators are not as efficient as the projective 

estimators when outliers are associated with individual effects, but both also do not fail when there are outliers 

in the area effects. 

We now turn to an examination of the performance of different methods of MSE estimation investigated 

in the simulations. MSE estimation for the REBLUP and REBLUP-BC is implemented via the robust MSE 

estimators (28) and (29) (hereafter CCT) and via the linearization-based MSE estimators (40) and (A6) 

(hereafter CCST), while for the MQ and the MQ-BC both (51) and (A9) (CCST) and the robust MSE 

estimator described in Chambers et al. (2007, Section 2.3 - CCT) are calculated. The bootstrap procedure 

proposed by Sinha and Rao (2009) for REBLUP is also investigated by using bootstrap samples of sizes 100. 

The MSE of the EBLUP estimator is estimated by Prasad-Rao (PR), CCT (Chambers et al., 2007, Section 2.3) 

and CCST (45) estimators. 

The behaviour of the MSE estimators for each scenario and for each approach is shown in Table 2 

where we report the median values of their area specific relative bias, relative root mean squared error and 

coverage rate for a nominal 95 per cent confidence interval. These intervals are based on ‘normal theory’ and 

are defined by the small area mean estimate plus or minus twice their corresponding estimated root mean 

squared error. These results show that both CCT and CCST tend to be biased low, but CCST is better in terms 

of coverage rate. It shows a small amount of under-coverage for all predictors. The CCST estimator is 

preferable to CCT for REBLUP and REBLUP-BC. It shows smaller bias and more stability. Moreover it 

seems that CCST is better able to handle the scenarios where outliers are present. The CCT and CCST 

estimators perform similarly for MQ-BC, even if CCST seems more stable. The PR estimator of MSE does 

well: it is very stable and shows good bias properties except in the presence of area level outliers, when it is 

biased downwards significantly. The bias properties of the bootstrap MSE estimator for REBLUP and 

REBLUP-BC are comparable with CCST, but it is much more stable.  
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6. Design-Based Simulation Study 

Design-based simulations complement model-based simulations for small area estimation since they 

allow us to evaluate the performance of small area estimation methods in the context of a real 

population and realistic sampling methods where we do not know the precise source of the 

contamination. From a practical perspective we believe that this type of simulation, by effectively 

fixing the differences between the small areas, constitutes a more practical and appropriate 

representation of the small area estimation problem from a finite population perspective. Further, it 

provides a good illustration of why a focus on conditional MSE is likely to be closer to the MSE of 

interest for people using small area methods. 

The population underpinning the design-based simulation is based on a data set obtained under 

the Environmental Monitoring and Assessment Program (EMAP) of the U.S. Environmental Protection 

Agency. The background to this data set is that between 1991 and 1995, EMAP conducted a survey 

of lakes in the North-Eastern states of the U.S. The data collected in this survey consists of 551 

measurements from a sample of 334 of the 21,026 lakes located in this area. The lakes making up 

this population are grouped into 113 8-digit Hydrologic Unit Codes (HUCs), of which 64 contained 

less than 5 observations and 27 did not have any. In our simulation, we defined HUCs as the small 

areas of interest, with lakes grouped within HUCs. The variable of interest is Acid Neutralizing 

Capacity (ANC), an indicator of the acidification risk of water bodies. A total of 1000 independent 

random samples of lake locations are then taken from the population of 21,026 lake locations by 

randomly selecting locations in the 86 HUCs that containing EMAP sampled lakes, with sample sizes 

in these HUCs set to the greater of five and the original EMAP sample size. Details on the data 

generation are in Salvati et al. (2008). Table 3 shows the median relative bias and the median 

relative root MSE of the different predictors (EBLUP, REBLUP, MQ, REBLUP-BC, MQ-BC). 

Similarly, Table 4 report the median relative bias, the median relative root MSE and the median 

coverage rate of the corresponding estimators of the MSEs of these predictors calculated from the 

same sample. MQ-BC and REBLUP-BC predictors work well in terms of both bias and MSE, while 

the EBLUP is the worst in terms of relative root MSE. The REBLUP shows a good performance in 
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terms of RRMSE but records a big negative bias. The MQ predictor shows the worst behaviour in 

terms of bias and MSE. 

We now turn to an examination of the performance of different methods of MSE estimation 

investigated in the design-based simulation. The Prasad-Rao (PR) estimator of the MSE of the 

EBLUP has an upward bias and larger instability than the CCST estimator for the EBLUP. This 

could be due to the unconditional basis of the PR estimator. The CCST estimator seems to offer the 

best overall results with REBLUP and REBLUP-BC, while CCT and CCST show similar performance 

in terms of bias and RRMSE for MQ-BC. In this simulation experiment the MSE estimation of the 

MQ predictor is problematic for both CCT and CCST. The bootstrap MSE estimator does not work 

for the REBLUP, showing big bias and instability, whereas it is a good competitor for CCT and 

CCST as far as REBLUP-BC is concerned. The coverage rates (for nominal 95 percent intervals) are 

presented in Table 4. The CCST estimation method produces intervals with median coverage close to 

95 percent for EBLUP, REBLUP and REBLUP-BC. It records substantial under-coverage for MQ and 

MQ-BC, even if, for these estimators, it performs better than CCT. The bootstrap MSE estimator 

shows a degree of over-coverage for REBLUP. This occurs because the bootstrap method assumes 

that the linear mixed model (1) holds for the small areas, whereas this assumption is difficult to 

meet in many practical applications. A final comment is appropriate considering the results on the 

coverage rate. Chatterjee et al. (2008), discussing the use of bootstrap methods for constructing 

confidence intervals for small area parameters, argue that there is no guarantee that the asymptotic 

behaviour underpinning normal theory confidence intervals applies in the context of the small samples 

that characterize small area estimation. For this reason the authors do not recommend the use of the 

‘normal theory’ to construct the prediction intervals (as we have done here). 

The behaviour of the empirical true root MSE and its estimators for each area and for each 

approach are shown in Figures 1, 2 and 3. Examination of these results can be useful for 

understanding the reasons for different performances of the MSE estimators. Figure 1 shows the 

results for EBLUP predictor and we can note that the PR estimator does not seem to be able to 

capture between area differences in the design-based RMSE of the EBLUP, while the CCT MSE 
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estimator for the EBLUP tracks the irregular profile of the area-specific empirical MSE very well. 

Also CCST works quite well but produces somewhat over-smoothed estimates of area-specific 

empirical MSE. These results confirm the poor design-based properties of the PR estimator (Longford, 

2007). Figure 2 reports the results for REBLUP and REBLUP-BC predictors. For the REBLUP (top) 

it is evident that CCT tends to underestimate the true area-specific MSE, mainly because its squared 

bias component underestimates the actual squared bias of this predictor. The bootstrap MSE estimator 

produces over-smoothed estimates of area-specific empirical MSE, because in this simulation the 

assumption that linear mixed model (1) holds is violated. The CCST estimator tracks area-specific 

empirical MSE but it shows underestimation in a few areas. It can be seen that the CCST MSE 

estimator for the REBLUP-BC (bottom) has the best performance and tracks the irregular profile of 

the area-specific empirical MSE very well, while the bootstrap MSE estimator for the REBLUP-BC 

generates over-smoothed estimates of area-specific empirical MSE. Figure 3 illustrates the results for 

MQ (top) and MQ-BC (bottom) predictors. The MSE estimators have a similar behaviour. They track 

the irregular profile of the area-specific empirical MSE very well for MQ-BC, while, for MQ, the 

CCT and CCST underestimates the true area-specific MSE. 

 

7. Final Remarks 

In this paper we explore the extension of the Robust Predictive approach to small area estimation 

and we propose two different analytical mean squared error (MSE) estimators for outlier robust 

predictors of small area means. The first proposal is a bias-robust MSE estimator based on the 

'pseudo-linearization' approach discussed by Chambers et al. (2007). The second method is a 

linearization-based MSE estimation based on first order approximations to the variances of solutions 

of estimating equations. 

The empirical results in Sections 5 and 6 show that the bias-corrected predictive estimators (REBLUP-

BC and MQ-BC) are less biased than the projective estimators (EBLUP, REBLUP and MQ) especially when 

there are outliers in the area effects. From the results of the simulation experiments there is evidence that the 

BC estimators are not as efficient as the projective estimators when outliers are associated with individual 
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effects. This is due to increased variability as a consequence of their bias corrections. We can note also that 

REBLUP-BC and MQ-BC do not fail when there are outliers in the area effects. A method to compute the 

‘optimal’ cut-off value c for the function  and improve the efficiency of the BC estimators remains to be 

done. A cross-validation approach could be a possible method. 

The pseudo-linearization and linearization-based MSE estimators described in Section 4 and in the 

Appendix can be an alternative to bootstrap MSE estimation for REBLUP and REBLUP-BC. Moreover, the 

CCST estimator shows a good performance also for MQ-type estimators. Overall, the CCST method performs 

reasonably well for the different small area predictors that we have compared in both model-based and design-

based simulation experiments. We also note that the Prasad-Rao estimator of the EBLUP and the bootstrap 

MSE estimator of the REBLUP proposed by Sinha and Rao (2009), which work well when their model 

assumptions are valid, have problems, especially in terms of bias, in the presence of outliers. In the model-

based simulations the CCST estimator performs quite well in all scenarios and it works better than PR and 

bootstrap-type MSE estimators when there outliers in the area and individual effects in terms of bias, stability 

and coverage rate. 

Recently, the CCT estimator has been extended to estimating the MSE of M-quantile Geographically 

Weighted Regression small area estimators (Salvati et. al., 2008) and to predictors based on nonparametric 

small area models (Salvati et al., 2009). It could be interesting to explore whether the CCST estimator can also 

be used in these cases, or with nonparametric M-quantile small area estimators (Pratesi et al. 2008). 

Finally, the CCST MSE estimator presented in this paper is developed under the conditional version of 

the linear mixed model, i.e. it is conditioned on area effects when applied in the context of a mixed model. 

However, it is possible to develop an unconditional version of the CCST MSE estimator that averages over the 

distribution of the random area effects under a linear mixed model, and so reduces to the Prasad-Rao MSE 

estimator in the case of the EBLUP. This is an avenue for further research. 

Appendix 
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In the appendix we show how the weights 
  

wis
RBLUP( )

T
in expression (23) are obtained, and sketch the 

development of the linearization-based MSE estimators for the REBLUP-BC (22) and MQ-BC (21) 

predictors. 
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ŷi

RBLUP
= Ni

1 y jj si
+ Ni ni( )x ir

T
+ Ni ni( ) zir

T
u{ } . 

Moreover, 
   = Asys  and 

   u = Bs Is XsAs( ) . Then the RBLUP becomes  

   
ŷi
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A.2 Linearization-Based MSE estimation for REBLUP-BC and MQ-BC 

We develop MSE estimators for the REBLUP-BC and MQ-BC predictors by extending the linearization 

approach of Street et al. (1988) to estimation of prediction variance for estimators based on robust estimating 

equations. 

 

MSE estimation of REBLUP-BC 
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To obtain the prediction variance of RBLUP-BC we start from the prediction error 
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If the tuning constant used in the BC term is large,  1and we can write 
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The covariance between the first and second terms on the right hand side should be of a lower order of 

magnitude than either of their variances, so we can write 
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The corresponding estimator of the MSE of RBLUP-BC is therefore  
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. For a random intercepts model, this become 
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Expressions for 
   
V̂ ( ) , 

    
V̂ u( )  and   V̂ eri( )  are set out in the RBLUP development in Section 4.2. The 

conditional MSE of REBLUP-BC is obtained by adding an extra term to (A2) and (A3) due to the 

uncertainty of the estimated variance components. The approach already used for RBLUP can be used to 

approximate   ŷi
REBLUP BC ŷi
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where   Bs  is defined in Section 4.1 and is the vector of the variance components. Hence, 
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. Note that   Di = 0  when  is the identity 

function (i.e. the Chambers and Dunstan (1992) version of BC) and the model is a random intercepts one. 

Finally, we estimate the variance-covariance matrix of the variance components 
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results already obtained for the RBLUP, and hence calculate an estimate of the prediction variance of the 

REBLUP-BC. The MSE of   ŷi
REBLUP BC for the random intercept model can be written as 
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MSE estimation of MQ-BC 

As in the Section 4.2 for the MQ case we assume that the  qi  values are known. The estimation or prediction 

error for MQ-BC is 

   

ŷi
MQ BC yi = Ni

1
x j

T ˆ
qi

j ri

+
Ni ni

Nini
ij

y j x j
T ˆ

qi

ijj si

Ni
1 y j

j ri

.  

We can write 

   

1
ni

ij

y j x j
T ˆ

qi

ijj si

1
ni

ij

y j x j
T

qi

ijj si

+ ˆ
qi qi

( )
T

qi

1
ni

ij

yi x i
T

qi

ijj si

 

where 

   
qi

1
ni

ij

y j x j
T

qi

ijj si

=
1
ni

y j x j
T

qi

ijj si

x i  

and hence 



32 

   

ŷi
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If the tuning constant used in the BC term is large,  1 and we can write 
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The covariance between the first and second terms on the right hand side should be of a lower order of 

magnitude than either of their variances, so 
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The corresponding estimator of the MSE of MQ BC, when  q = q̂ , is therefore: 
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Table 1 Model-based simulation results: performances of predictors of small area means. 
 

Estimator No outliers Individual outliers  Area outliers  Both types 
Scenario/Areas [0,0] [0,u]/ 

1-36 

[e,0] [e,u]/ 
1-36 

[0,u]/ 
37-40 

[e,u]/ 
37-40 

 Median values of Relative Bias (expressed as a percentage) 
EBLUP 0.019 0.097 -0.019 0.166 -0.536 -1.592
REBLUP 0.027 0.108 -0.391 -0.296 -0.468 -0.998
MQ 0.020 0.088 -0.428 -0.323 -0.942 -0.988
REBLUP-BC 0.022 0.026 -0.286 -0.276 0.020 -0.318
MQ-BC 0.022 0.030 -0.276 -0.262 -0.068 -0.297
 Median values of Relative Root MSE (expressed as a percentage) 
EBLUP 0.805 0.854 1.215 1.369 0.966 2.389
REBLUP 0.822 0.842 1.008 0.985 1.019 1.436
MQ 0.824 0.833 1.030 1.008 1.464 1.570
REBLUP-BC 0.913 0.918 1.232 1.240 0.859 1.270
MQ-BC 0.913 0.915 1.238 1.256 0.931 1.486
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Table 2 Performance of Root MSE estimators in model-based simulation experiments. 
Estimator MSE Estimator No outliers Individual Area  Both  

Scenario/Areas  [0,0] [0,u]/ 
1-36 

[e,0] [e,u]/ 
1-36 

[0,u]/ 
37-40 

[e,u]/ 
37-40 

  Median values of Relative Bias (expressed as a percentage) 
Prasad-Rao -0.34 3.82 1.74 11.32 -17.31 -40.86

CCT 3.61 1.55 31.24 5.95 2.15 -3.05EBLUP

CCST 5.64 4.78 33.95 8.52 77.26 8.28
CCT -17.71 -20.24 -15.76 -19.51 -34.79 -36.63
CCST -2.01 -5.31 -8.46 -7.91 -3.58 -22.51REBLUP
Bootstrap -1.19 7.38 -4.42 11.37 -19.42 -31.44
CCT -2.98 -12.56 -16.29 -24.02 6.69 177.42

MQ
CCST 0.11 -7.77 -8.21 -14.10 8.95 163.38
CCT -10.56 -11.88 -12.46 -12.57 -10.54 -18.37
CCST 12.98 12.19 7.79 7.90 13.63 4.67REBLUP-BC
Bootstrap -0.21 -0.52 -6.76 -4.90 -1.25 -12.96
CCT -6.35 -7.19 3.48 1.87 3.92 5.96

MQ-BC
CCST -7.18 -7.42 -11.38 -11.42 3.21 -9.20

  Median values of Relative Root MSE (expressed as a percentage) 
Prasad-Rao 6.24 7.20 18.57 22.28 17.90 43.19

CCT 31.51 31.25 76.20 61.57 28.37 51.30EBLUP

CCST 26.65 15.20 66.72 29.28 88.30 39.97
CCT 29.52 28.67 30.82 29.00 28.58 38.70
CCST 27.86 20.89 28.47 20.25 22.87 29.24REBLUP
Bootstrap 10.27 10.67 34.92 16.61 14.62 33.04
CCT 61.94 59.88 61.50 59.67 43.76 205.30

MQ
CCST 54.77 50.63 49.14 45.34 40.58 189.92
CCT 33.64 33.21 45.20 45.48 33.56 47.18
CCST 38.14 37.65 51.03 50.34 37.63 53.71REBLUP-BC
Bootstrap 10.12 10.20 15.27 14.53 10.60 18.35
CCT 36.68 36.19 65.37 65.70 38.33 64.26

MQ-BC
CCST 33.93 33.55 44.81 44.65 35.30 50.55

  Median values of Coverage Rate (expressed as a percentage) 
Prasad-Rao 95 96 95 96 90 73

CCT 90 90 92 93 93 91EBLUP

CCST 94 96 96 96 98 97
CCT 87 86 86 86 86 78
CCST 92 92 90 92 94 86REBLUP
Bootstrap 94 96 92 96 93 83
CCT 72 69 67 66 90 91

MQ
CCST 79 79 81 80 92 92
CCT 86 85 86 86 85 82
CCST 91 91 91 91 92 88REBLUP-BC
Bootstrap 95 95 93 94 95 91
CCT 86 86 82 82 87 86

MQ-BC
CCST 87 87 86 86 88 88
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Table 3 Median values of the relative bias (RB) and relative root mean squared error (RRMSE) 

generated by estimators in design-based simulation. All values are expressed as percentages and are 

over the regions of interest. 

 

Estimator RB(%) RRMSE(%)
EBLUP 10.79 35.18

REBLUP -13.08 30.59

MQ -22.98 35.07

REBLUP-BC -4.13 31.94
MQ-BC -6.17 31.57

 

Table 4 Performance of Root MSE estimators in design-based simulation: median values of the 

percentage relative bias, relative root MSE and coverage rate (for nominal 95 per cent interval). 

Intervals are defined by the small area mean estimate plus or minus twice their corresponding 

estimated root mean squared error. 
 

Estimator\MSE estimator Prasad-Rao CCT CCST Bootstrap
Median values of Relative Bias (expressed as a percentage)

EBLUP 6.37 1.79 5.85

REBLUP -23.06 3.59 32.12

MQ -31.59 -24.48

REBLUP-BC -14.58 3.51 0.48

MQ-BC -6.40 -11.01
Median values of Relative Root MSE (expressed as a percentage)

EBLUP 30.61 30.67 28.16

REBLUP 45.79 43.72 61.95

MQ 62.19 55.88

REBLUP-BC 39.78 43.13 39.81

MQ-BC 45.53 38.38
Median values of Coverage Rate (expressed as a percentage)

EBLUP 96 94 94

REBLUP 82 91 99

MQ 70 81

REBLUP-BC 82 92 95
MQ-BC 78 83
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Figure 1 Area specific values of true RMSE (solid line) and average estimated RMSE (dashed 

line) obtained in the design-based simulation. Values for the PR estimator are indicated by , those 

for the CCT estimator are indicated by , and those for the CCST estimator are indicated by . 

Plots show results for the EBLUP predictor. 
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Figure 2 Area specific values of true RMSE (solid line) and average estimated RMSE (dashed 

line) obtained in the design-based simulation. Values for the CCT estimator are indicated by , 

those for the CCST estimator are indicated by , while those for the MSE bootstrap estimator are 

indicated by . Plots show results REBLUP (top) and REBLUP-BC (bottom) predictors. 
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Figure 3 Area specific values of true RMSE (solid line) and average estimated RMSE (dashed 

line) obtained in the design-based simulation. Values for the CCT estimator are indicated by , 

while those for the CCST estimator are indicated by . Plots show results MQ (top) and MQ-BC 

(bottom) predictors. 
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